{"title":"An Undergraduate Laboratory on Recombineering and CRISPR/Cas9-Assisted Gene Editing in Escherichia coli","authors":"Ming-Mei Chang","doi":"10.1002/bmb.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Laboratory experience is vital to undergraduate science education. It allows students to observe and conduct engaging experiments to enhance their skills and literacy, helps them retain knowledge, and deepens their understanding of related content covered in lectures. This paper reports a 4-week undergraduate laboratory exercise on <i>Escherichia coli</i> gene editing by recombineering, recombination-mediated genetic engineering, with or without clustered regularly interspaced short palindromic repeats and their associated protein 9 (CRISPR/Cas9). Gene editing makes precise modifications to the DNA of living organisms that influence their development and functions. As technology evolves, recombineering and CRISPR/Cas9 have replaced methods that use restriction enzymes and DNA ligase and are applied to a wide variety of research and applications. It is necessary to introduce undergraduates to these two rapidly growing technologies. Student results obtained from the lab indicate that antisense single-stranded oligodeoxynucleotide (ssODN) has a 15–20 times higher recombineering efficiency than the sense strand. Treatment with a plasmid containing the crRNA target of CRISPR/Cas9 increased recombineering efficiency. Instructional assessments, based on student feedback, revealed that the lab had clear objectives, instructions, and explicit protocols, with sufficient time to complete them, and was found to be interesting and worthwhile. Student learning outcomes, assessed by comparing pre-lab questions and post-lab tests, suggested that they learned the underlying principles and detailed molecular mechanisms. Besides learning the technologies and acquiring basic laboratory skills, students practiced key components of scientific research, such as data collection, analysis, and scientific communication.</p>\n </div>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"53 5","pages":"555-562"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://iubmb.onlinelibrary.wiley.com/doi/10.1002/bmb.70002","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Laboratory experience is vital to undergraduate science education. It allows students to observe and conduct engaging experiments to enhance their skills and literacy, helps them retain knowledge, and deepens their understanding of related content covered in lectures. This paper reports a 4-week undergraduate laboratory exercise on Escherichia coli gene editing by recombineering, recombination-mediated genetic engineering, with or without clustered regularly interspaced short palindromic repeats and their associated protein 9 (CRISPR/Cas9). Gene editing makes precise modifications to the DNA of living organisms that influence their development and functions. As technology evolves, recombineering and CRISPR/Cas9 have replaced methods that use restriction enzymes and DNA ligase and are applied to a wide variety of research and applications. It is necessary to introduce undergraduates to these two rapidly growing technologies. Student results obtained from the lab indicate that antisense single-stranded oligodeoxynucleotide (ssODN) has a 15–20 times higher recombineering efficiency than the sense strand. Treatment with a plasmid containing the crRNA target of CRISPR/Cas9 increased recombineering efficiency. Instructional assessments, based on student feedback, revealed that the lab had clear objectives, instructions, and explicit protocols, with sufficient time to complete them, and was found to be interesting and worthwhile. Student learning outcomes, assessed by comparing pre-lab questions and post-lab tests, suggested that they learned the underlying principles and detailed molecular mechanisms. Besides learning the technologies and acquiring basic laboratory skills, students practiced key components of scientific research, such as data collection, analysis, and scientific communication.
期刊介绍:
The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including:
Innovative techniques in teaching and learning.
New pedagogical approaches.
Research in biochemistry and molecular biology education.
Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc.
Historical Reviews describing "Paths to Discovery".
Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics.
Reviews of relevant textbooks, software, and websites.
Descriptions of software for educational use.
Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.