Matthew Clemson, Alice Huang, Gareth Denyer, Maurizio Costabile
{"title":"Teaching second-year biochemistry students the principles of an enzyme-catalyzed spectrophotometric assay with an online lab simulator","authors":"Matthew Clemson, Alice Huang, Gareth Denyer, Maurizio Costabile","doi":"10.1002/bmb.21903","DOIUrl":null,"url":null,"abstract":"<p>The teaching of laboratory skills to undergraduate students is central to all experimental sciences. In this setting, students must understand the experimental procedures as well as the fundamental principle(s) being demonstrated, all while learning within a limited time. Other limiting factors include access to equipment and reagents, resulting in students frequently working in pairs or small groups to complete experiments, and consequently, students gain limited experience in the practical techniques. In addition, due to competing subjects and a filled curriculum, there is typically limited or no opportunity for students to repeat a laboratory exercise. As a result, the time pressure forces students to focus on completing the laboratory exercise without engaging at a deeper level with the concepts and principles being demonstrated. This can result in deficiencies in student understanding principles as well as developing the required proficiency in hands-on skills with equipment. To overcome these issues, we implemented an online laboratory data simulator to replicate the laboratory quantification of ethanol in simulated driver blood samples. This approach allowed students to attempt the exercise as often and whenever they chose, while still faithfully replicating a traditional laboratory setting. We implemented this approach across two Australian universities using a mixed-methods approach and assessed the impact of the simulator on student learning of biochemistry lab-related concepts. Based on our findings, we suggest that this online approach can effectively teach fundamental laboratory concepts to students while eliminating many of the constraints of hands-on laboratory classes.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"53 4","pages":"370-380"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmb.21903","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmb.21903","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The teaching of laboratory skills to undergraduate students is central to all experimental sciences. In this setting, students must understand the experimental procedures as well as the fundamental principle(s) being demonstrated, all while learning within a limited time. Other limiting factors include access to equipment and reagents, resulting in students frequently working in pairs or small groups to complete experiments, and consequently, students gain limited experience in the practical techniques. In addition, due to competing subjects and a filled curriculum, there is typically limited or no opportunity for students to repeat a laboratory exercise. As a result, the time pressure forces students to focus on completing the laboratory exercise without engaging at a deeper level with the concepts and principles being demonstrated. This can result in deficiencies in student understanding principles as well as developing the required proficiency in hands-on skills with equipment. To overcome these issues, we implemented an online laboratory data simulator to replicate the laboratory quantification of ethanol in simulated driver blood samples. This approach allowed students to attempt the exercise as often and whenever they chose, while still faithfully replicating a traditional laboratory setting. We implemented this approach across two Australian universities using a mixed-methods approach and assessed the impact of the simulator on student learning of biochemistry lab-related concepts. Based on our findings, we suggest that this online approach can effectively teach fundamental laboratory concepts to students while eliminating many of the constraints of hands-on laboratory classes.
期刊介绍:
The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including:
Innovative techniques in teaching and learning.
New pedagogical approaches.
Research in biochemistry and molecular biology education.
Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc.
Historical Reviews describing "Paths to Discovery".
Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics.
Reviews of relevant textbooks, software, and websites.
Descriptions of software for educational use.
Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.