Biochemistry and Cell Biology最新文献

筛选
英文 中文
Retraction: MiR-1180 promotes cardiomyocyte cell cycle re-entry after injury through the NKIRAS2-NFκB pathway. 缩回:MiR-1180通过NKIRAS2-NFκB通路促进心肌细胞损伤后细胞周期的再进入。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 DOI: 10.1139/bcb-2025-0052
{"title":"Retraction: MiR-1180 promotes cardiomyocyte cell cycle re-entry after injury through the NKIRAS2-NFκB pathway.","authors":"","doi":"10.1139/bcb-2025-0052","DOIUrl":"10.1139/bcb-2025-0052","url":null,"abstract":"","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":"103 ","pages":"1"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential role of AhR/NR4A1 in androgen-dependent prostate cancer: focus on TCDD-induced ferroptosis. AhR/NR4A1 在雄激素依赖性前列腺癌中的潜在作用:聚焦 TCDD 诱导的铁变态反应。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-11-20 DOI: 10.1139/bcb-2024-0155
Xiang Chen, Yuan Yao, Guotong Gong, Tianji He, Chenjun Ma, Jingsong Yu
{"title":"The potential role of AhR/NR4A1 in androgen-dependent prostate cancer: focus on TCDD-induced ferroptosis.","authors":"Xiang Chen, Yuan Yao, Guotong Gong, Tianji He, Chenjun Ma, Jingsong Yu","doi":"10.1139/bcb-2024-0155","DOIUrl":"10.1139/bcb-2024-0155","url":null,"abstract":"<p><p>Prostate cancer (PCa) is a complex disease with diverse molecular alterations. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that exhibits pleiotropic roles in PCa, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent ligand for AhR. While targeting ferroptosis is an innovative PCa therapeutic strategy, the impact of AhR on this process remains unclear. This study aimed to investigate the influence of AhR on lipid peroxidation and ferroptosis. Results showed that TCDD activated AhR, as evidenced by increased CYP1A1 expression, leading to reduced cell viability. TCDD caused mitochondria shrinkage, decreased the GSH/GSSG ratio, and elevated the MDA levels and lipid peroxidation. Interestingly, AhR knockdown reversed these effects, similar to the action of ferroptosis inhibitors. Mechanistically, TCDD suppressed nuclear receptor subfamily 4 group A member 1 (NR4A1) expression, in part due to AhR activation. This suppression subsequently led to a reduction in the expression of the NR4A1 downstream target stearoyl-CoA desaturase 1 (SCD1). NR4A1 overexpression counteracted the effects of TCDD. In vivo, TCDD activated AhR, downregulated NR4A1 and SCD1 expression, induced mitochondria shrinkage, and increased the MDA and 4-hydroxynonenal (4-HNE) levels. In summary, TCDD promotes ferroptosis in androgen-dependent PCa via inhibiting the NR4A1/SCD1 axis, in part dependent on AhR activation.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-11"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and function of fermentation-derived bovine lactoferrin produced from Komagataella phaffii. 由 Komagataella phaffii 发酵产生的牛乳铁蛋白的结构和功能。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 DOI: 10.1139/bcb-2024-0105
Emma C Skoog, Vanessa Feher Castagna, Shafraz Omer, Julianna Madigan, Victoria Flagg, Kristen Burrick, Rulan Jiang, Xiaogu Du, Bo Lönnerdal, Aletta Schnitzler
{"title":"Structure and function of fermentation-derived bovine lactoferrin produced from <i>Komagataella phaffii</i>.","authors":"Emma C Skoog, Vanessa Feher Castagna, Shafraz Omer, Julianna Madigan, Victoria Flagg, Kristen Burrick, Rulan Jiang, Xiaogu Du, Bo Lönnerdal, Aletta Schnitzler","doi":"10.1139/bcb-2024-0105","DOIUrl":"10.1139/bcb-2024-0105","url":null,"abstract":"<p><p>Bovine lactoferrin (bLf) confers significant functional benefits for human health, but low concentrations in milk and high cost of commercial production limit availability and thus product application. Precision fermentation offers a solution to increase availability of biosimilar recombinant bLf (rbLf) thereby opening new opportunities for this high-value ingredient. To comply with regulatory requirements, we aimed to establish that rbLf from <i>Komagataella phaffii</i> is substantially similar to native bLf in structure and key functions. Intact mass analysis showed a molecular weight of 84 kDa for rbLf, comparable to 82-83 kDa of bLf. LC-MS <i>N</i>-linked glycan profiling revealed predominantly high-mannose-based glycans on rbLf, similar to ∼50% of bLf glycans. The isoelectric point and core amino acid sequence of rbLf and bLf are identical. rbLf retains the functional ability to bind and release iron, bind to intestinal Lf receptors, increase epithelial cell growth (>120% of control, <i>P</i> < 0.0001), reduce enteropathogenic <i>Escherichia coli</i> growth (>50% reduction, <i>P</i> < 0.0001), bind lipopolysaccharide (LPS) (+4-fold, <i>P</i> < 0.001), and antagonize LPS-induced toll-like receptor 4 activity (>40% reduction, <i>P</i> < 0.0001). These results demonstrate similarity of rbLf in structure and function to native bLf, supporting the effective application for expanded market opportunities for infant and adult health.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-17"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusarium graminearum Ste2 and Ste3 receptors undergo peroxidase-induced heterodimerization when expressed heterologously in Saccharomyces cerevisiae. 禾本科镰刀菌 Ste2 和 Ste3 受体在酿酒酵母中异源表达时发生过氧化物酶诱导的异源二聚化。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-10-22 DOI: 10.1139/bcb-2024-0104
Tanya Sharma, Robert Y Jomphe, Dongling Zhang, Ana C Magalhaes, Michele C Loewen
{"title":"<i>Fusarium graminearum</i> Ste2 and Ste3 receptors undergo peroxidase-induced heterodimerization when expressed heterologously in <i>Saccharomyces cerevisiae</i>.","authors":"Tanya Sharma, Robert Y Jomphe, Dongling Zhang, Ana C Magalhaes, Michele C Loewen","doi":"10.1139/bcb-2024-0104","DOIUrl":"10.1139/bcb-2024-0104","url":null,"abstract":"<p><p><i>Fusarium graminearum Fg</i>Ste2 and <i>Fg</i>Ste3 are G-protein-coupled receptors (GPCRs) shown to play roles in hyphal chemotropism and fungal plant pathogenesis in response to activity arising from host-secreted peroxidases. Here, we follow up on the observation that chemotropism is dependent on both <i>Fg</i>Ste2 and <i>Fg</i>Ste3 being present; testing the possibility that this might be due to formation of an <i>Fg</i>Ste2-<i>Fg</i>Ste3 heterodimer. Bioluminescence resonance energy transfer (BRET) analyses were conducted in <i>Saccharomyces cerevisiae</i>, where the addition of horse radish peroxidase (HRP) was found to increase the transfer of energy from the inducibly expressed <i>Fg</i>Ste3-Nano luciferase donor, to the constitutively expressed <i>Fg</i>Ste2-yellow fluorescent protein (YFP) acceptor, compared to controls. A partial response was also detected when an HRP-derived ligand-containing extract was enriched from <i>F. graminearum</i> spores and applied instead of HRP. In contrast, substitution with pheromones or an unrelated bovine GPCR, rhodopsin-YFP used as acceptor, eliminated all BRET responses. Interaction results were validated by affinity pulldown and receptor expression was validated by confocal immunofluorescence microscopy. Taken together these findings demonstrate the formation of HRP and HRP-derived ligand stimulated heterodimers between <i>Fg</i>Ste2 and <i>Fg</i>Ste3. Outcomes are discussed from the context of the roles of ligands and reactive oxygen species in GPCR dimerization.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-12"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence in academia: opportunities, challenges, and ethical considerations. 学术界的人工智能:机遇、挑战和伦理考虑。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-11-29 DOI: 10.1139/bcb-2024-0216
Joshua Molligan, Edel Pérez-López
{"title":"Artificial intelligence in academia: opportunities, challenges, and ethical considerations.","authors":"Joshua Molligan, Edel Pérez-López","doi":"10.1139/bcb-2024-0216","DOIUrl":"10.1139/bcb-2024-0216","url":null,"abstract":"","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-3"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TMCO1 regulates energy metabolism and mitochondrial function of hepatocellular carcinoma cells through TOMM20, affecting the growth of subcutaneous graft tumors and infiltration of CAFs. TMCO1通过TOMM20调节肝癌细胞的能量代谢和线粒体功能,影响皮下移植瘤的生长和CAFs的浸润。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-11-20 DOI: 10.1139/bcb-2024-0091
Genwang Wang, Di Liu, Junzhi Leng, Dong Jin, Qi Wang, Hao Wang, Yang Bu, Feng Wang, Yongfeng Hui
{"title":"TMCO1 regulates energy metabolism and mitochondrial function of hepatocellular carcinoma cells through TOMM20, affecting the growth of subcutaneous graft tumors and infiltration of CAFs.","authors":"Genwang Wang, Di Liu, Junzhi Leng, Dong Jin, Qi Wang, Hao Wang, Yang Bu, Feng Wang, Yongfeng Hui","doi":"10.1139/bcb-2024-0091","DOIUrl":"10.1139/bcb-2024-0091","url":null,"abstract":"<p><p>This study mainly shows the role of endoplasmic reticulum transmembrane and coiled coil domains 1 (TMCO1) in the regulatory mechanism of hepatocellular carcinoma (HCC). Invasion and migration capacity were detected by Transwell and wound healing after TMCO1 and TOMM20 overexpression and knockdown, and mitochondrial function was detected through reactive oxygen species (ROS), mitochondrial permeability transition pore (mPTP), mitochondrial membrane potential (MMP), and ATP production. A model of subcutaneous tumor formation in nude mice was established to detect the effect of TMCO1 on tumor formation. The results showed that overexpression of TMCO1 significantly promoted HCC cell metastasis, promoted cell proliferation and ATP production, inhibited cell apoptosis, mPTP opening and ROS production, mediated the increase of MMP level and cytoskeletal remodeling. However, knocking down TMCO1 can have the opposite effect. More importantly, knocking down TOMM20 can block the regulation effect of TMCO1, and TOMM20 overexpression can alleviate the inhibitory effect of knocking down TMCO1 on the development of liver cancer cells. In animal models, knockdown of TMCO1 expression significantly inhibited the growth of subcutaneous implant tumors. This suggests that TMCO1 may be a potential and valuable therapeutic target for liver cancer.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-15"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroprotective effects of whey and buttermilk-based formulas on a DSS-induced colitis murine model. 乳清和酪乳配方奶粉对 DSS 诱导的小鼠结肠炎模型的神经保护作用。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-10-01 DOI: 10.1139/bcb-2024-0153
Berta Buey, Eva Latorre, Marta Castro, Marta Sofía Valero, Miguel Ángel Plaza, María Pilar Arruebo, Inés Abad, Ana Rodríguez-Largo, Lourdes Sánchez, José Emilio Mesonero
{"title":"Neuroprotective effects of whey and buttermilk-based formulas on a DSS-induced colitis murine model.","authors":"Berta Buey, Eva Latorre, Marta Castro, Marta Sofía Valero, Miguel Ángel Plaza, María Pilar Arruebo, Inés Abad, Ana Rodríguez-Largo, Lourdes Sánchez, José Emilio Mesonero","doi":"10.1139/bcb-2024-0153","DOIUrl":"10.1139/bcb-2024-0153","url":null,"abstract":"<p><p>Inflammatory bowel disease is a gut-brain axis disorder that comprises chronic inflammatory conditions affecting the gastrointestinal tract, where alterations in the mood of patients are common. Gut-brain axis is a bidirectional communication that link gut and brain. The close association between inflammatory bowel disease and neuroinflammation has far-reaching implications, as is increasingly recognized as a contributing factor to neuropsychiatric and neurodegenerative diseases. The increasing prevalence and high economic cost, together with the loss of life quality of people suffering from these diseases, point to the need to find alternatives to alleviate them. Exploring new therapeutic avenues prompts us to consider the potential benefits of milk fractions, taking advantage of the use of dairy by-products, such as whey and buttermilk. This study examines the impact of cow's whey- and buttermilk-based formulas supplemented with bovine lactoferrin and milk fat globule membrane on the expression of cytokines, as well as on the components of immune and serotonergic system of the brain in a murine model of dextran sodium sulfate-induced colitis. Our results show the potential of these dairy by-products, especially whey, as functional foods in ameliorating neuroinflammation and safeguarding the central nervous system function amid the neurological complications induced or concomitant with intestinal inflammatory processes.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-11"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early pigment spot segmentation and classification from iris cellular image analysis with explainable deep learning and multiclass support vector machine. 利用可解释的深度学习和多类支持向量机从虹膜细胞图像分析中进行早期色素斑点分割和分类。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2023-10-31 DOI: 10.1139/bcb-2023-0183
Amjad R Khan, Rabia Javed, Tariq Sadad, Saeed Ali Bahaj, Gabriel Avelino Sampedro, Mideth Abisado
{"title":"Early pigment spot segmentation and classification from iris cellular image analysis with explainable deep learning and multiclass support vector machine.","authors":"Amjad R Khan, Rabia Javed, Tariq Sadad, Saeed Ali Bahaj, Gabriel Avelino Sampedro, Mideth Abisado","doi":"10.1139/bcb-2023-0183","DOIUrl":"10.1139/bcb-2023-0183","url":null,"abstract":"<p><p>Globally, retinal disorders impact thousands of individuals. Early diagnosis and treatment of these anomalies might halt their development and prevent many people from developing preventable blindness. Iris spot segmentation is critical due to acquiring iris cellular images that suffer from the off-angle iris, noise, and specular reflection. Most currently used iris segmentation techniques are based on edge data and noncellular images. The size of the pigment patches on the surface of the iris increases with eye syndrome. In addition, iris images taken in uncooperative settings frequently have negative noise, making it difficult to segment them precisely. The traditional diagnosis processes are costly and time consuming since they require highly qualified personnel and have strict environments. This paper presents an explainable deep learning model integrated with a multiclass support vector machine to analyze iris cellular images for early pigment spot segmentation and classification. Three benchmark datasets MILE, UPOL, and Eyes SUB were used in the experiments to test the proposed methodology. The experimental results are compared on standard metrics, demonstrating that the proposed model outperformed the methods reported in the literature regarding classification errors. Additionally, it is observed that the proposed parameters are highly effective in locating the micro pigment spots on the iris surfaces.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-10"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71420299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of the polybromo-associated BAF complex in development. 多溴相关 BAF 复合物在发育过程中的作用。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-11-14 DOI: 10.1139/bcb-2024-0224
JinYoung Park, Jacob G Kirkland
{"title":"The role of the polybromo-associated BAF complex in development.","authors":"JinYoung Park, Jacob G Kirkland","doi":"10.1139/bcb-2024-0224","DOIUrl":"10.1139/bcb-2024-0224","url":null,"abstract":"<p><p>Chromatin is dynamically regulated during development, where structural changes affect the transcription of genes required to promote different cell types. One of the chromatin regulatory factors responsible for transcriptional regulation during development is the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, an ATP-dependent chromatin remodeling factor conserved throughout eukaryotes. The catalytic subunit of this complex, BRG1, is shared in all three SWI/SNF complexes subfamilies and is essential for developing most cell lineages. Interestingly, many human developmental diseases have correlative or causative mutations in different SWI/SNF subunits. Many polybromo-associated BAF (pBAF) complex-specific subunit genetic alterations result in developmental failures in tissue-specific ways. This observation suggests that the pBAF complex plays a vital role in development and differentiation, and studying the pBAF complex may provide an opportunity to better understand gene regulation during development. In this mini-view, we will focus on the functions of pBAF-specific subunits and their influence on the development of various cell and tissue types by regulating developmental gene expression.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-8"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel mouse model of pulmonary fibrosis: twice-repeated oropharyngeal bleomycin administration mimicking human pathology. 一种新的小鼠肺纤维化模型:两次重复的口咽博来霉素给药模拟人类病理。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 DOI: 10.1139/bcb-2024-0221
Jingyu Wang, Fengqing Zhu, Yuxuan Liu, Renru Luo, Zixuan Fan, Wanqin Dai, Shuquan Wei, Chuwen Lin
{"title":"A novel mouse model of pulmonary fibrosis: twice-repeated oropharyngeal bleomycin administration mimicking human pathology.","authors":"Jingyu Wang, Fengqing Zhu, Yuxuan Liu, Renru Luo, Zixuan Fan, Wanqin Dai, Shuquan Wei, Chuwen Lin","doi":"10.1139/bcb-2024-0221","DOIUrl":"10.1139/bcb-2024-0221","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease with high mortality and limited treatment options. While single-dose bleomycin-induced models are commonly used to investigate the pathogenesis of IPF, they fail to adequately replicate the complex pathological features in human patients, thereby hindering comprehensive investigations. Previous studies utilizing repetitive bleomycin injections have demonstrated a closer resemblance to human IPF pathology; however, the time- and resource-intensive nature of this approach presents significant drawbacks. Here, we propose a novel methodology involving twice-repeated oropharyngeal administration of bleomycin in mice, which closely mirrors the pathological manifestations observed in IPF patients. This model exhibited the honeycomb-like cyst formation, fibroblastic foci, bronchiolization of alveolar epithelium, emergence of metaplastic alveolar KRT5<sup>+</sup> basal cells, and sustainability of these fibrotic phenotypes, thereby providing a robust model for IPF. Our findings establish a more efficient and translatable preclinical platform for investigating IPF pathogenesis and exploring potential therapeutic strategies.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":"103 ","pages":"1-7"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信