Biochemistry and Cell Biology最新文献

筛选
英文 中文
Fusarium graminearum Ste2 and Ste3 receptors undergo peroxidase-induced heterodimerization when expressed heterologously in Saccharomyces cerevisiae. 禾本科镰刀菌 Ste2 和 Ste3 受体在酿酒酵母中异源表达时发生过氧化物酶诱导的异源二聚化。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-10-22 DOI: 10.1139/bcb-2024-0104
Tanya Sharma, Robert Y Jomphe, Dongling Zhang, Ana C Magalhaes, Michele C Loewen
{"title":"<i>Fusarium graminearum</i> Ste2 and Ste3 receptors undergo peroxidase-induced heterodimerization when expressed heterologously in <i>Saccharomyces cerevisiae</i>.","authors":"Tanya Sharma, Robert Y Jomphe, Dongling Zhang, Ana C Magalhaes, Michele C Loewen","doi":"10.1139/bcb-2024-0104","DOIUrl":"10.1139/bcb-2024-0104","url":null,"abstract":"<p><p><i>Fusarium graminearum Fg</i>Ste2 and <i>Fg</i>Ste3 are G-protein-coupled receptors (GPCRs) shown to play roles in hyphal chemotropism and fungal plant pathogenesis in response to activity arising from host-secreted peroxidases. Here, we follow up on the observation that chemotropism is dependent on both <i>Fg</i>Ste2 and <i>Fg</i>Ste3 being present; testing the possibility that this might be due to formation of an <i>Fg</i>Ste2-<i>Fg</i>Ste3 heterodimer. Bioluminescence resonance energy transfer (BRET) analyses were conducted in <i>Saccharomyces cerevisiae</i>, where the addition of horse radish peroxidase (HRP) was found to increase the transfer of energy from the inducibly expressed <i>Fg</i>Ste3-Nano luciferase donor, to the constitutively expressed <i>Fg</i>Ste2-yellow fluorescent protein (YFP) acceptor, compared to controls. A partial response was also detected when an HRP-derived ligand-containing extract was enriched from <i>F. graminearum</i> spores and applied instead of HRP. In contrast, substitution with pheromones or an unrelated bovine GPCR, rhodopsin-YFP used as acceptor, eliminated all BRET responses. Interaction results were validated by affinity pulldown and receptor expression was validated by confocal immunofluorescence microscopy. Taken together these findings demonstrate the formation of HRP and HRP-derived ligand stimulated heterodimers between <i>Fg</i>Ste2 and <i>Fg</i>Ste3. Outcomes are discussed from the context of the roles of ligands and reactive oxygen species in GPCR dimerization.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-12"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and function of fermentation-derived bovine lactoferrin produced from Komagataella phaffii. 由 Komagataella phaffii 发酵产生的牛乳铁蛋白的结构和功能。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 DOI: 10.1139/bcb-2024-0105
Emma C Skoog, Vanessa Feher Castagna, Shafraz Omer, Julianna Madigan, Victoria Flagg, Kristen Burrick, Rulan Jiang, Xiaogu Du, Bo Lönnerdal, Aletta Schnitzler
{"title":"Structure and function of fermentation-derived bovine lactoferrin produced from <i>Komagataella phaffii</i>.","authors":"Emma C Skoog, Vanessa Feher Castagna, Shafraz Omer, Julianna Madigan, Victoria Flagg, Kristen Burrick, Rulan Jiang, Xiaogu Du, Bo Lönnerdal, Aletta Schnitzler","doi":"10.1139/bcb-2024-0105","DOIUrl":"10.1139/bcb-2024-0105","url":null,"abstract":"<p><p>Bovine lactoferrin (bLf) confers significant functional benefits for human health, but low concentrations in milk and high cost of commercial production limit availability and thus product application. Precision fermentation offers a solution to increase availability of biosimilar recombinant bLf (rbLf) thereby opening new opportunities for this high-value ingredient. To comply with regulatory requirements, we aimed to establish that rbLf from <i>Komagataella phaffii</i> is substantially similar to native bLf in structure and key functions. Intact mass analysis showed a molecular weight of 84 kDa for rbLf, comparable to 82-83 kDa of bLf. LC-MS <i>N</i>-linked glycan profiling revealed predominantly high-mannose-based glycans on rbLf, similar to ∼50% of bLf glycans. The isoelectric point and core amino acid sequence of rbLf and bLf are identical. rbLf retains the functional ability to bind and release iron, bind to intestinal Lf receptors, increase epithelial cell growth (>120% of control, <i>P</i> < 0.0001), reduce enteropathogenic <i>Escherichia coli</i> growth (>50% reduction, <i>P</i> < 0.0001), bind lipopolysaccharide (LPS) (+4-fold, <i>P</i> < 0.001), and antagonize LPS-induced toll-like receptor 4 activity (>40% reduction, <i>P</i> < 0.0001). These results demonstrate similarity of rbLf in structure and function to native bLf, supporting the effective application for expanded market opportunities for infant and adult health.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-17"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifaceted roles of MeCP2 in cellular regulation and phase separation: implications for neurodevelopmental disorders, depression, and oxidative stress.
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 DOI: 10.1139/bcb-2024-0237
Katrina V Good, Ladan Kalani, John B Vincent, Juan Ausió
{"title":"Multifaceted roles of MeCP2 in cellular regulation and phase separation: implications for neurodevelopmental disorders, depression, and oxidative stress.","authors":"Katrina V Good, Ladan Kalani, John B Vincent, Juan Ausió","doi":"10.1139/bcb-2024-0237","DOIUrl":"10.1139/bcb-2024-0237","url":null,"abstract":"<p><p>Methyl CpG binding protein 2 (MeCP2) is a chromatin-associated protein that remains enigmatic despite more than 30 years of research, primarily due to the ever-growing list of its molecular functions, and, consequently, its related pathologies. Loss of function <i>MECP2</i> mutations cause the neurodevelopmental disorder Rett syndrome (RTT); in addition, dysregulation of MeCP2 expression and/ or function are involved in numerous other pathologies, but the mechanisms of MeCP2 regulation are unclear. Advancing technologies and burgeoning mechanistic theories assist our understanding of the complexity of MeCP2 but may inadvertently cloud it if not rigorously tested. Here, rather than focus on RTT, we examine relatively underexplored aspects of MeCP2, such as its dosage homeostasis at the gene and protein levels, its controversial participation in phase separation, and its overlooked role in depression and oxidative stress. All these factors may be essential to understanding the full scope of MeCP2 function in healthy and diseased states, but are relatively infrequently studied and require further criticism. The aim of this review is to discuss the esoteric facets of MeCP2 at the molecular and pathological levels and to consider to what extent they may be necessary for general MeCP2 function.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":"103 ","pages":"1-12"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential role of AhR/NR4A1 in androgen-dependent prostate cancer: focus on TCDD-induced ferroptosis. AhR/NR4A1 在雄激素依赖性前列腺癌中的潜在作用:聚焦 TCDD 诱导的铁变态反应。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-11-20 DOI: 10.1139/bcb-2024-0155
Xiang Chen, Yuan Yao, Guotong Gong, Tianji He, Chenjun Ma, Jingsong Yu
{"title":"The potential role of AhR/NR4A1 in androgen-dependent prostate cancer: focus on TCDD-induced ferroptosis.","authors":"Xiang Chen, Yuan Yao, Guotong Gong, Tianji He, Chenjun Ma, Jingsong Yu","doi":"10.1139/bcb-2024-0155","DOIUrl":"10.1139/bcb-2024-0155","url":null,"abstract":"<p><p>Prostate cancer (PCa) is a complex disease with diverse molecular alterations. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that exhibits pleiotropic roles in PCa, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent ligand for AhR. While targeting ferroptosis is an innovative PCa therapeutic strategy, the impact of AhR on this process remains unclear. This study aimed to investigate the influence of AhR on lipid peroxidation and ferroptosis. Results showed that TCDD activated AhR, as evidenced by increased CYP1A1 expression, leading to reduced cell viability. TCDD caused mitochondria shrinkage, decreased the GSH/GSSG ratio, and elevated the MDA levels and lipid peroxidation. Interestingly, AhR knockdown reversed these effects, similar to the action of ferroptosis inhibitors. Mechanistically, TCDD suppressed nuclear receptor subfamily 4 group A member 1 (NR4A1) expression, in part due to AhR activation. This suppression subsequently led to a reduction in the expression of the NR4A1 downstream target stearoyl-CoA desaturase 1 (SCD1). NR4A1 overexpression counteracted the effects of TCDD. In vivo, TCDD activated AhR, downregulated NR4A1 and SCD1 expression, induced mitochondria shrinkage, and increased the MDA and 4-hydroxynonenal (4-HNE) levels. In summary, TCDD promotes ferroptosis in androgen-dependent PCa via inhibiting the NR4A1/SCD1 axis, in part dependent on AhR activation.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-11"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence in academia: opportunities, challenges, and ethical considerations. 学术界的人工智能:机遇、挑战和伦理考虑。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-11-29 DOI: 10.1139/bcb-2024-0216
Joshua Molligan, Edel Pérez-López
{"title":"Artificial intelligence in academia: opportunities, challenges, and ethical considerations.","authors":"Joshua Molligan, Edel Pérez-López","doi":"10.1139/bcb-2024-0216","DOIUrl":"10.1139/bcb-2024-0216","url":null,"abstract":"","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-3"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroprotective effects of whey and buttermilk-based formulas on a DSS-induced colitis murine model. 乳清和酪乳配方奶粉对 DSS 诱导的小鼠结肠炎模型的神经保护作用。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-10-01 DOI: 10.1139/bcb-2024-0153
Berta Buey, Eva Latorre, Marta Castro, Marta Sofía Valero, Miguel Ángel Plaza, María Pilar Arruebo, Inés Abad, Ana Rodríguez-Largo, Lourdes Sánchez, José Emilio Mesonero
{"title":"Neuroprotective effects of whey and buttermilk-based formulas on a DSS-induced colitis murine model.","authors":"Berta Buey, Eva Latorre, Marta Castro, Marta Sofía Valero, Miguel Ángel Plaza, María Pilar Arruebo, Inés Abad, Ana Rodríguez-Largo, Lourdes Sánchez, José Emilio Mesonero","doi":"10.1139/bcb-2024-0153","DOIUrl":"10.1139/bcb-2024-0153","url":null,"abstract":"<p><p>Inflammatory bowel disease is a gut-brain axis disorder that comprises chronic inflammatory conditions affecting the gastrointestinal tract, where alterations in the mood of patients are common. Gut-brain axis is a bidirectional communication that link gut and brain. The close association between inflammatory bowel disease and neuroinflammation has far-reaching implications, as is increasingly recognized as a contributing factor to neuropsychiatric and neurodegenerative diseases. The increasing prevalence and high economic cost, together with the loss of life quality of people suffering from these diseases, point to the need to find alternatives to alleviate them. Exploring new therapeutic avenues prompts us to consider the potential benefits of milk fractions, taking advantage of the use of dairy by-products, such as whey and buttermilk. This study examines the impact of cow's whey- and buttermilk-based formulas supplemented with bovine lactoferrin and milk fat globule membrane on the expression of cytokines, as well as on the components of immune and serotonergic system of the brain in a murine model of dextran sodium sulfate-induced colitis. Our results show the potential of these dairy by-products, especially whey, as functional foods in ameliorating neuroinflammation and safeguarding the central nervous system function amid the neurological complications induced or concomitant with intestinal inflammatory processes.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-11"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TMCO1 regulates energy metabolism and mitochondrial function of hepatocellular carcinoma cells through TOMM20, affecting the growth of subcutaneous graft tumors and infiltration of CAFs. TMCO1通过TOMM20调节肝癌细胞的能量代谢和线粒体功能,影响皮下移植瘤的生长和CAFs的浸润。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-11-20 DOI: 10.1139/bcb-2024-0091
Genwang Wang, Di Liu, Junzhi Leng, Dong Jin, Qi Wang, Hao Wang, Yang Bu, Feng Wang, Yongfeng Hui
{"title":"TMCO1 regulates energy metabolism and mitochondrial function of hepatocellular carcinoma cells through TOMM20, affecting the growth of subcutaneous graft tumors and infiltration of CAFs.","authors":"Genwang Wang, Di Liu, Junzhi Leng, Dong Jin, Qi Wang, Hao Wang, Yang Bu, Feng Wang, Yongfeng Hui","doi":"10.1139/bcb-2024-0091","DOIUrl":"10.1139/bcb-2024-0091","url":null,"abstract":"<p><p>This study mainly shows the role of endoplasmic reticulum transmembrane and coiled coil domains 1 (TMCO1) in the regulatory mechanism of hepatocellular carcinoma (HCC). Invasion and migration capacity were detected by Transwell and wound healing after TMCO1 and TOMM20 overexpression and knockdown, and mitochondrial function was detected through reactive oxygen species (ROS), mitochondrial permeability transition pore (mPTP), mitochondrial membrane potential (MMP), and ATP production. A model of subcutaneous tumor formation in nude mice was established to detect the effect of TMCO1 on tumor formation. The results showed that overexpression of TMCO1 significantly promoted HCC cell metastasis, promoted cell proliferation and ATP production, inhibited cell apoptosis, mPTP opening and ROS production, mediated the increase of MMP level and cytoskeletal remodeling. However, knocking down TMCO1 can have the opposite effect. More importantly, knocking down TOMM20 can block the regulation effect of TMCO1, and TOMM20 overexpression can alleviate the inhibitory effect of knocking down TMCO1 on the development of liver cancer cells. In animal models, knockdown of TMCO1 expression significantly inhibited the growth of subcutaneous implant tumors. This suggests that TMCO1 may be a potential and valuable therapeutic target for liver cancer.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-15"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of the polybromo-associated BAF complex in development. 多溴相关 BAF 复合物在发育过程中的作用。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-11-14 DOI: 10.1139/bcb-2024-0224
JinYoung Park, Jacob G Kirkland
{"title":"The role of the polybromo-associated BAF complex in development.","authors":"JinYoung Park, Jacob G Kirkland","doi":"10.1139/bcb-2024-0224","DOIUrl":"10.1139/bcb-2024-0224","url":null,"abstract":"<p><p>Chromatin is dynamically regulated during development, where structural changes affect the transcription of genes required to promote different cell types. One of the chromatin regulatory factors responsible for transcriptional regulation during development is the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, an ATP-dependent chromatin remodeling factor conserved throughout eukaryotes. The catalytic subunit of this complex, BRG1, is shared in all three SWI/SNF complexes subfamilies and is essential for developing most cell lineages. Interestingly, many human developmental diseases have correlative or causative mutations in different SWI/SNF subunits. Many polybromo-associated BAF (pBAF) complex-specific subunit genetic alterations result in developmental failures in tissue-specific ways. This observation suggests that the pBAF complex plays a vital role in development and differentiation, and studying the pBAF complex may provide an opportunity to better understand gene regulation during development. In this mini-view, we will focus on the functions of pBAF-specific subunits and their influence on the development of various cell and tissue types by regulating developmental gene expression.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-8"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD38 deficiency prevents diabetic nephropathy by inhibiting lipid accumulation and oxidative stress through activation of the SIRT3 pathway. CD38 缺乏症可通过激活 SIRT3 途径抑制脂质积累和氧化应激,从而预防糖尿病肾病。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-08-08 DOI: 10.1139/bcb-2024-0058
Ling-Fang Wang, Qian Li, Jia Le Zhao, Ke Wen, Ya-Ting Zhang, Qi-Hang Zhao, Qi Ding, Jia-Hui Li, Xiao-Hui Guan, Yun-Fei Xiao, Ke-Yu Deng, Hong-Bo Xin
{"title":"CD38 deficiency prevents diabetic nephropathy by inhibiting lipid accumulation and oxidative stress through activation of the SIRT3 pathway.","authors":"Ling-Fang Wang, Qian Li, Jia Le Zhao, Ke Wen, Ya-Ting Zhang, Qi-Hang Zhao, Qi Ding, Jia-Hui Li, Xiao-Hui Guan, Yun-Fei Xiao, Ke-Yu Deng, Hong-Bo Xin","doi":"10.1139/bcb-2024-0058","DOIUrl":"10.1139/bcb-2024-0058","url":null,"abstract":"<p><p>Diabetic nephropathy (DN) is one of the most common complications of diabetes. Our previous study showed that CD38 knockout (CD38KO) mice had protective effects on many diseases. However, the roles and mechanisms of CD38 in DN remain unknown. Here, DN mice were generated by high-fat diet (HFD) feeding plus streptozotocin (STZ) injection in male CD38KO and CD38flox mice. Mesangial cells (SV40 MES 13 cells) were used to mimic the injury of DN with palPagination Donemitic acid (PA) treatment in vitro. Our results showed that CD38 expression was significantly increased in kidney of diabetic CD38flox mice and SV40 MES 13 cells treated with PA. CD38KO mice were significantly resistant to diabetes-induced renal injury. Moreover, CD38 deficiency markedly decreased HFD/STZ-induced lipid accumulation, fibrosis, and oxidative stress in kidney tissue. In contrast, overexpression of CD38 aggravated PA-induced lipid accumulation and oxidative stress. CD38 deficiency increased expression of SIRT3, while overexpression of CD38 decreased its expression. More importantly, 3-TYP, an inhibitor of SIRT3, significantly enhanced PA-induced lipid accumulation and oxidative stress in CD38 overexpressing cell lines. In conclusion, our results demonstrated that CD38 deficiency prevented DN by inhibiting lipid accumulation and oxidative stress through activation of the SIRT3 pathway.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-12"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perturbation of calcium homeostasis invokes eryptosis-like cell death in enucleated bone marrow stem cells. 扰乱钙稳态会导致无核骨髓干细胞发生红细胞增多症样细胞死亡。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-11-18 DOI: 10.1139/bcb-2024-0106
Wei Yan, Ruolan Wu, Yingying Lee, Liqun Xu, Xiao Li, Junwei Li, Ronghao Deng, Xing Fan, Yilang Wu, Haibao Zhu, Aihua Mao, Jianxin Shen, Chi-Ju Wei
{"title":"Perturbation of calcium homeostasis invokes eryptosis-like cell death in enucleated bone marrow stem cells.","authors":"Wei Yan, Ruolan Wu, Yingying Lee, Liqun Xu, Xiao Li, Junwei Li, Ronghao Deng, Xing Fan, Yilang Wu, Haibao Zhu, Aihua Mao, Jianxin Shen, Chi-Ju Wei","doi":"10.1139/bcb-2024-0106","DOIUrl":"10.1139/bcb-2024-0106","url":null,"abstract":"<p><p>Enucleated cells, also known as cytoplasts, are valuable tools with a wide range of applications. However, their potential for bio-engineering is greatly restricted by the short lifespan. We postulated that the enucleation process damages the integrity of the plasma membrane and thus activates a cell death program(s). The results showed that a tiny hole was generated transiently on the plasma membrane when the nucleus was spun off, while force-gated ion channels were activated in response to the pulling by the nucleus. Influx of extracellular calcium stimulated the opening of calcium channels and the release of calcium from endoplasmic reticulum and mitochondria. Long lasting calcium transient increased protein phosphorylation and activated caspase 9 and calpain proteinase activities. Subsequently, mitochondria membrane permeability and Reactive Oxygen Species (ROS) levels were significantly elevated, which eventually led to eryptosis-like cell death. When extracellular calcium was maintained at optimal concentration, the lifespan of enucleated cells was extended; however, huge amounts of vacuoles appeared in the cytoplasm, possibly derived from enlarged autophagosomes. Inhibition of vacuolation by inhibitors of autophagy or in co-culture with primary muscle cells did not rescue cells dying from the paraptosis-like pathway. These results offer valuable insights for further investigation into the intricate mechanisms underlying enucleated cell death.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-11"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信