Biochemistry and Cell Biology最新文献

筛选
英文 中文
Efficacy of lactoferrin supplementation in pediatric infections: A systematic review and meta-analysis.
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-22 DOI: 10.1139/bcb-2024-0181
Valerie S Mayorga, Rafaella Navarro, Victor D Torres Roldan, Meritxell Urtecho, Silvia Tipe, Bea Calvert, Laura A Wright, Theresa J Ochoa
{"title":"Efficacy of lactoferrin supplementation in pediatric infections: A systematic review and meta-analysis.","authors":"Valerie S Mayorga, Rafaella Navarro, Victor D Torres Roldan, Meritxell Urtecho, Silvia Tipe, Bea Calvert, Laura A Wright, Theresa J Ochoa","doi":"10.1139/bcb-2024-0181","DOIUrl":"https://doi.org/10.1139/bcb-2024-0181","url":null,"abstract":"<p><p>Pediatric infections account for approximately one-third of all deaths in children under 5 globally. Lactoferrin (LF) supplementation has the potential to reduce infection-related morbidity due to its antimicrobial, anti-inflammatory and immunoregulatory properties. We conducted a systematic review and meta-analysis of oral LF supplementation randomized controlled trials (RCT) in population under 18 years old. The primary outcomes were infection-associated outcomes: late onset sepsis (LOS), diarrhea, and upper respiratory infections (URI). We also analyzed mortality among LOS studies. Of 1,594 citations identified, 25 studies met eligibility criteria, including 10 studies of LOS, 14 of diarrhea and 8 of URI. LF supplementation was associated with fewer patients with culture-proven or probable neonatal LOS compared to placebo (OR: 0.60; 95% CI: 0.42 to 0.86), with fewer patients with diarrhea compared to placebo in children (OR: 0.56; 95% CI: 0.41 to 0.75), and no significant fewer patients with URI (OR: 0.61; 95% CI: 0.27 to 1.40). Before LF can be used as a public health intervention, it is necessary to refine some aspects of the design of future trials. Ideally these trials should be conducted in countries with the highest burden of infections, where the potential benefit is expected to have the largest impact.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How prevalent are lactoferrin receptors in Gram-negative bacteria? 乳铁蛋白受体在革兰氏阴性菌中有多普遍?
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-09 DOI: 10.1139/bcb-2024-0180
Nikolas F Ewasechko, David M Curran, Ken Yu Khaw, Anthony B Schryvers
{"title":"How prevalent are lactoferrin receptors in Gram-negative bacteria?","authors":"Nikolas F Ewasechko, David M Curran, Ken Yu Khaw, Anthony B Schryvers","doi":"10.1139/bcb-2024-0180","DOIUrl":"https://doi.org/10.1139/bcb-2024-0180","url":null,"abstract":"<p><p>Surface receptors in Gram-negative bacteria that bind and extract iron from the host glycoproteins transferrin (Tf) or lactoferrin (Lf) was discovered 35 years ago in pathogenic <i>Neisseria</i> species and subsequently was discovered in other pathogens of humans and food production animals. These bacterial species reside exclusively on the mucosal surfaces of the respiratory or genitourinary tract of their mammalian host and rely on their host specific Tf and Lf receptors to acquire iron for survival. Since the specificity of the bacterial Tf receptors was shown to be due to selective pressures on the host Tf, their presence in bacteria that reside in both mammals and birds indicates that they arose over 320 million years ago. Once Lf arose in mammals due to a gene duplication event, Lf receptors subsequently arose from Tf receptors. The focus on pathogens for discovery of these receptors has led to a limited understanding of how prevalent the Tf and Lf receptors are in commensal species and raises the question whether they are present in additional bacterial lineages. Since the Lf receptor provides a secondary iron acquisition system plus can provide protection from cationic peptides its presence varies in bacterial lineages.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LMAN2 interacts with HEATR3 to expedite HER2-positive breast cancer advancement and inflammation and Akt/ERK/NF-κB signaling. LMAN2与heat3相互作用,加速her2阳性乳腺癌进展和炎症以及Akt/ERK/NF-κB信号传导。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-08 DOI: 10.1139/bcb-2024-0166
Sujian Xiao, Tong Yu, Fulan Yang, Huozhong Yuan, Jun Ni
{"title":"LMAN2 interacts with HEATR3 to expedite HER2-positive breast cancer advancement and inflammation and Akt/ERK/NF-κB signaling.","authors":"Sujian Xiao, Tong Yu, Fulan Yang, Huozhong Yuan, Jun Ni","doi":"10.1139/bcb-2024-0166","DOIUrl":"https://doi.org/10.1139/bcb-2024-0166","url":null,"abstract":"<p><p>The paper aimed to reveal the impacts and the possible mechanism of action of lectin mannose-binding 2 protein (LMAN2) in HER2-positive breast cancer (BC). The expression, prognostic potential of LMAN2, and the correlation between LMAN2 and HEAT repeat containing 3 (HEATR3) in BC were analyzed in TCGA database. Intact, Mentha, and BioGrid databases predicted LMAN2-HEATR3 interactions. Reverse transcription-quantitative PCR and Western blot examined LMAN2 expression. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining, wound healing, and transwell assays, respectively, detected the aggressive cellular biological behaviors including proliferation, migration, and invasion. Western blot analyzed the expression of matrix metalloproteinases, HEATR3, and protein kinase B (Akt)/extracellular signal-regulated kinase (ERK)/nuclear factor-kappaB (NF-κB) signaling-related proteins. Co-immunoprecipitation assay was used to prove the relationship of LMAN2 with HEATR3. Enzyme-linked immunosorbent assay detected inflammatory cytokine levels. LMAN2 was overexpressed in HER2-positive BC tissues and cells and indicated unfavorable prognosis of BC patients. LMAN2 knockdown suppressed HER2-positive BC cell proliferation, migration, and invasion. LMAN2 interacted with and had a positive correlation with HEATR3. HEATR3 up-regulation reversed the repressive role of LMAN2 interference in the progression of HER2-positive BC, Akt/ERK/NF-κB signaling, and inflammatory response. Altogether, LMAN2 silencing might exert anti-tumor and anti-inflammatory properties and inactivate Akt/ERK/NF-κB signaling in HER2-positive BC via binding to HEATR3.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origin of dedifferentiated adipocyte-derived cells (DFAT) during ceiling culture in an Adiponectin Cre-Recombinase mouse model. 在脂肪蛋白 Cre 重组酶小鼠模型的上限培养过程中,已分化脂肪细胞衍生细胞(DFAT)的起源。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-10-30 DOI: 10.1139/bcb-2024-0140
Marie-Frédérique Gauthier, Giada Ostinelli, Mélissa Pelletier, André Tchernof
{"title":"Origin of dedifferentiated adipocyte-derived cells (DFAT) during ceiling culture in an Adiponectin Cre-Recombinase mouse model.","authors":"Marie-Frédérique Gauthier, Giada Ostinelli, Mélissa Pelletier, André Tchernof","doi":"10.1139/bcb-2024-0140","DOIUrl":"10.1139/bcb-2024-0140","url":null,"abstract":"<p><p>DFAT cells represent an attractive source of stem cells in tissue engineering and in the potential treatment of several clinical conditions. Our objective was to determine whether DFAT cells originate from mature adipocytes and address whether contamination from the stromal vascular fraction (SVF) could be as a source for these cells. A murine adiponectin-creERT;mT/mG model was used with the excision of the cassette induced by tamoxifen injection for the cells expressing adiponectin (adipoq). This model allows distinguishing of mature adipocytes (green fluorescence) from other SVF cell types (red fluorescence) based on the fluorescent protein expressed. Mature adipocytes and SVF cells were isolated from adipose tissues by collagenase digestion. Ceiling cultures were imaged by time-lapse microscopy. Confocal microscopy was used to follow cells over 21 days. Time-lapse microscopy experiments showed liposecretion occurring in mature adipocytes displaying green fluorescence. Confocal imaging allowed the identification of a heterogeneous cell population expressing green but also red fluorescence after 21 days of culture. Asymmetrical division of mature adipocytes was not observed. In conclusion, liposecretion of mature adipocytes is a phenomenon that can be observed in vitro and DFAT cells do originate from mature adipocytes<i>.</i> However, the population of DFAT cells is heterogenous.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-10"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1-Deoxynojirimycin affects high glucose-induced pancreatic beta-cell dysfunction through regulating CEBPA expression and AMPK pathway. 1-脱氧野尻霉素通过调节CEBPA表达和AMPK通路影响高血糖诱导的胰岛β细胞功能障碍
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-11-15 DOI: 10.1139/bcb-2024-0128
Xiaoying Li, Shenggui Liu, Siqi Wang, Xinghui Ai, Lin Wei
{"title":"1-Deoxynojirimycin affects high glucose-induced pancreatic beta-cell dysfunction through regulating CEBPA expression and AMPK pathway.","authors":"Xiaoying Li, Shenggui Liu, Siqi Wang, Xinghui Ai, Lin Wei","doi":"10.1139/bcb-2024-0128","DOIUrl":"10.1139/bcb-2024-0128","url":null,"abstract":"<p><p>This study aims to explore the role of 1-deoxynojirimycin (DNJ) in high glucose-induced β-cells and to further explore the molecular mechanism of DNJ effect on β-cells through network pharmacology. In the study, high glucose treatment of mouse INS-1 cells inhibited cell proliferation and insulin secretion, decreased the expression of Bcl-2 protein and Ins1 and Ins2 genes, promoted apoptosis, and increased cleaved caspase-3 and cleaved caspase-9 expression levels as well as intracellular reactive oxygen species production. DNJ treatment significantly restored the dysfunction of INS-1 cells induced by high glucose, and DNJ showed no toxicity to normal INS-1 cells. Silencing CEBPA promoted, while overexpression of CEBPA relieved the dysfunction of pancreatic β-cells induced by high glucose. DNJ treatment partially restored the pancreatic β-cell dysfunction caused by silencing CEBPA. In conclusion, DNJ can inhibit high glucose-induced pancreatic β-cell dysfunction by promoting the expression of CEBPA.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-12"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. RNA 聚合酶 II 转录调控的新见解:转录因子、相分离及其在心血管疾病中的作用。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-11-14 DOI: 10.1139/bcb-2024-0094
Mengmeng Liu, Yingrui Li, Xin Yuan, Shunkang Rong, Jianlin Du
{"title":"Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases.","authors":"Mengmeng Liu, Yingrui Li, Xin Yuan, Shunkang Rong, Jianlin Du","doi":"10.1139/bcb-2024-0094","DOIUrl":"10.1139/bcb-2024-0094","url":null,"abstract":"<p><p>Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-21"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TRIM3 modulates cisplmatin-resistant of cervical squamous cell carcinoma via endoplasmic reticulum stress signaling in vitro. TRIM3在体外通过内质网应激信号调节宫颈鳞癌顺铂耐药。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-12-02 DOI: 10.1139/bcb-2024-0154
Meiya Mao, Tianzi You, Kejun Xu, Huiqing Ding
{"title":"TRIM3 modulates cisplmatin-resistant of cervical squamous cell carcinoma via endoplasmic reticulum stress signaling in vitro.","authors":"Meiya Mao, Tianzi You, Kejun Xu, Huiqing Ding","doi":"10.1139/bcb-2024-0154","DOIUrl":"10.1139/bcb-2024-0154","url":null,"abstract":"<p><p>TRIM3 is widely recognized as a tumor suppressor gene. However, its precise role in cervical squamous cell carcinoma (CESC) remains elusive. Here, we observed a significant decrease in the expression of TRIM3 in CESC cells. Overexpression of TRIM3 suppresses cell proliferation and clonal formation. Through the establishment of cisplatin (cDDP)-resistant CESC cell lines, we discovered that the expression of TRIM3 was further downregulated in cDDP-resistant cells, while overexpression of TRIM3 enhanced cellular sensitivity to cDDP. Mechanistic investigations revealed that TRIM3 directly interacts with GRP78, a crucial protein involved in endoplasmic reticulum stress (ERS) pathway, promoting its ubiquitination degradation. Under cDDP treatment, the overexpression of TRIM3 in cDDP-resistant cells suppressed cell proliferation and downregulated the expression of drug-resistant genes, while simultaneously enhancing the activation of apoptosis signaling pathways. However, co-expression of TRIM3 and GRP78 restored cellular sensitivity to cDDP back to normal levels. Consequently, overexpressing TRIM3 in drug-resistant cells facilitates PERK activation and subsequent induction of apoptosis through inhibition of GRP78, ultimately suppressing drug resistance and inducing apoptosis in CESC cells. In conclution, our study suggests that the TRIM3/GRP78 axis regulates cDDP resistance in CESC cells by modulating the downstream apoptotic pathway of ERS.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-12"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibiofilm activities of lactoferricin-related Trp- and Arg-rich antimicrobial hexapeptides against pathogenic Staphylococcus aureus and Pseudomonas aeruginosa strains. 乳铁蛋白相关的富含 Trp 和 Arg 的抗菌六肽对致病性金黄色葡萄球菌和铜绿假单胞菌菌株的抗生物膜活性。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-10-17 DOI: 10.1139/bcb-2024-0183
Gopal Ramamourthy, Hans J Vogel
{"title":"Antibiofilm activities of lactoferricin-related Trp- and Arg-rich antimicrobial hexapeptides against pathogenic <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> strains.","authors":"Gopal Ramamourthy, Hans J Vogel","doi":"10.1139/bcb-2024-0183","DOIUrl":"10.1139/bcb-2024-0183","url":null,"abstract":"<p><p>Recently, several antimicrobial peptides (AMPs), varying in length from 12 to 37 residues, have been shown to act as antibiofilm agents. Here, we report a study of 23 hexapeptides modeled after four different Trp- and Arg-rich AMPs, including the RRWQWR-NH<sub>2</sub> peptide, derived from bovine lactoferrin. They were tested against the pathogenic Gram-negative <i>Pseudomonas aeruginosa</i> PAO1 strain and a Gram-positive <i>Staphylococcus aureus</i> MRSA strain. Both strains were engineered to express the green fluorescent protein (GFP) protein, and fluorescence detection was used to measure the ability of the peptides to prevent biofilm formation (minimum biofilm inhibitory concentration (MBIC)) or to cause the breakdown of established biofilms (minimum biofilm eradication concentration (MBEC)). Similar antibiofilm activities were obtained with the standard crystal violet dye assay. Most Trp- and Arg-rich hexapeptides displayed a potent antibiofilm activity against the Gram-positive <i>S. aureus</i> MRSA strain. In particular, hexapeptides with 3 Arg and 3 Trp were very effective, especially when they contained the three Trp in sequence. Somewhat unexpectedly, the antimicrobial (MIC) values correlated with the MBIC and MBEC values, which has not been seen for several other AMP/antibiofilm peptides. Our results demonstrate that short Trp- and Arg-rich peptides merit further studies as antibiofilm agents that could be deployed to address part of the antimicrobial resistance problem.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-18"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
E2F8 facilitates malignant phenotypes of muscle-invasive bladder cancer via increasing MCM7 expression. E2F8 通过增加 MCM7 的表达促进肌肉浸润性膀胱癌恶性表型的形成。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-11-27 DOI: 10.1139/bcb-2024-0083
Li-Yun Liu, Liang Tian, Ling-Huan Gao, Hai-Jun Cui, Xue-Mei Li, Yue-Hong Li
{"title":"E2F8 facilitates malignant phenotypes of muscle-invasive bladder cancer via increasing MCM7 expression.","authors":"Li-Yun Liu, Liang Tian, Ling-Huan Gao, Hai-Jun Cui, Xue-Mei Li, Yue-Hong Li","doi":"10.1139/bcb-2024-0083","DOIUrl":"10.1139/bcb-2024-0083","url":null,"abstract":"<p><p>E2F transcription factor 8 (E2F8) is an important regulator of the cell cycle. In this study, we first assessed the expression of E2F8 in bladder cancer and examined its effects in the malignant phenotypes of bladder cancer cell lines. We found that E2F8 was upregulated in bladder cancer tissues, and the increased expression was positively associated with higher clinical stage. E2F8 knockdown suppressed bladder cancer cell proliferation, accompanied by the performance of G1 phase arrest and the upregulated Cyclin D1 protein expression. The migrative and invasive capability was reduced in E2F8-depleted bladder cancer cells. Cisplatin resistance is an important cause of bladder cancer relapse. E2F8 downregulation facilitated cisplatin-induced apoptosis of bladder cancer cells. MCM7 is regulated by E2F and has been shown to participate in bladder cancer. There was a positive correlation between E2F8 and MCM7 expression in bladder cancer. We confirmed that E2F8 bound to the promoter region of MCM7 and activated MCM7 transcription. MCM7 overexpression abrogated the suppressive effects of E2F8 knockdown on malignant phenotypes of bladder cancer cells. We also demonstrated that E2F8 knockdown suppressed bladder cancer progression in vivo. In conclusion, we verify that E2F8 functioned in bladder cancer, and might exert its function via MCM7.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-14"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactoferrin modulates oxidative stress and inflammatory cytokines in a murine model of dysbiosis induced by clindamycin. 在克林霉素诱导的菌群失调小鼠模型中,乳铁蛋白可调节氧化应激和炎症细胞因子。
IF 2.4 3区 生物学
Biochemistry and Cell Biology Pub Date : 2025-01-01 Epub Date: 2024-10-08 DOI: 10.1139/bcb-2024-0087
Inés Abad, Andrea Bellés, Ana Rodríguez-Largo, Lluís Luján, Ignacio de Blas, Dimitra Graikini, Laura Grasa, Lourdes Sánchez
{"title":"Lactoferrin modulates oxidative stress and inflammatory cytokines in a murine model of dysbiosis induced by clindamycin.","authors":"Inés Abad, Andrea Bellés, Ana Rodríguez-Largo, Lluís Luján, Ignacio de Blas, Dimitra Graikini, Laura Grasa, Lourdes Sánchez","doi":"10.1139/bcb-2024-0087","DOIUrl":"10.1139/bcb-2024-0087","url":null,"abstract":"<p><p>Antibiotics, specifically clindamycin (Clin), cause intestinal dysbiosis, reducing the microbiota with anti-inflammatory properties. Furthermore, Clin can induce alterations in the immune responses and oxidative stress. Lactoferrin, among other activities, participates in the maintenance of intestinal homeostasis and reduces dysbiosis induced by antibiotic treatment. The aim of this study was to analyze the effect of native and iron-saturated bovine LF in a murine model of dysbiosis induced by Clin. Six groups of male C57BL/6 mice were treated with saline (control), Clin, native lactoferrin (nLF), iron-saturated lactoferrin (sLF), nLF/Clin, or sLF/Clin. Oxidation caused in the intestinal cells of the ileum of animals subjected to different treatments was analyzed, focusing on lipid peroxidation and protein carbonyl content. The expression of inflammatory mediators was determined by qRT-PCR. Treatment with Clin did not modify lipid peroxidation, but significantly increased protein carbonyl levels up to almost 5-fold respect to the control, an effect that was reversed by orally administering sLF to mice. Furthermore, Clin increased the expression of interleukin-6 and TNF-α by 1- and 2-fold change, respectively. This effect was reversed by treatment with nLF and sLF, decreasing the expression to basal levels. In conclusion, this study indicates that lactoferrin can prevent some of the effects of Clin on intestinal cells and their associated immune system.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-12"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信