乳铁蛋白相关的富含 Trp 和 Arg 的抗菌六肽对致病性金黄色葡萄球菌和铜绿假单胞菌菌株的抗生物膜活性。

IF 2.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Gopal Ramamourthy, Hans J Vogel
{"title":"乳铁蛋白相关的富含 Trp 和 Arg 的抗菌六肽对致病性金黄色葡萄球菌和铜绿假单胞菌菌株的抗生物膜活性。","authors":"Gopal Ramamourthy, Hans J Vogel","doi":"10.1139/bcb-2024-0183","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, several antimicrobial peptides (AMPs), varying in length from 12 to 37 residues, have been shown to act as antibiofilm agents. Here, we report a study of 23 hexapeptides modeled after four different Trp- and Arg-rich AMPs, including the RRWQWR-NH<sub>2</sub> peptide, derived from bovine lactoferrin. They were tested against the pathogenic Gram-negative <i>Pseudomonas aeruginosa</i> PAO1 strain and a Gram-positive <i>Staphylococcus aureus</i> MRSA strain. Both strains were engineered to express the green fluorescent protein (GFP) protein, and fluorescence detection was used to measure the ability of the peptides to prevent biofilm formation (minimum biofilm inhibitory concentration (MBIC)) or to cause the breakdown of established biofilms (minimum biofilm eradication concentration (MBEC)). Similar antibiofilm activities were obtained with the standard crystal violet dye assay. Most Trp- and Arg-rich hexapeptides displayed a potent antibiofilm activity against the Gram-positive <i>S. aureus</i> MRSA strain. In particular, hexapeptides with 3 Arg and 3 Trp were very effective, especially when they contained the three Trp in sequence. Somewhat unexpectedly, the antimicrobial (MIC) values correlated with the MBIC and MBEC values, which has not been seen for several other AMP/antibiofilm peptides. Our results demonstrate that short Trp- and Arg-rich peptides merit further studies as antibiofilm agents that could be deployed to address part of the antimicrobial resistance problem.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibiofilm activities of lactoferricin-related Trp- and Arg-rich antimicrobial hexapeptides against pathogenic <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> strains.\",\"authors\":\"Gopal Ramamourthy, Hans J Vogel\",\"doi\":\"10.1139/bcb-2024-0183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, several antimicrobial peptides (AMPs), varying in length from 12 to 37 residues, have been shown to act as antibiofilm agents. Here, we report a study of 23 hexapeptides modeled after four different Trp- and Arg-rich AMPs, including the RRWQWR-NH<sub>2</sub> peptide, derived from bovine lactoferrin. They were tested against the pathogenic Gram-negative <i>Pseudomonas aeruginosa</i> PAO1 strain and a Gram-positive <i>Staphylococcus aureus</i> MRSA strain. Both strains were engineered to express the green fluorescent protein (GFP) protein, and fluorescence detection was used to measure the ability of the peptides to prevent biofilm formation (minimum biofilm inhibitory concentration (MBIC)) or to cause the breakdown of established biofilms (minimum biofilm eradication concentration (MBEC)). Similar antibiofilm activities were obtained with the standard crystal violet dye assay. Most Trp- and Arg-rich hexapeptides displayed a potent antibiofilm activity against the Gram-positive <i>S. aureus</i> MRSA strain. In particular, hexapeptides with 3 Arg and 3 Trp were very effective, especially when they contained the three Trp in sequence. Somewhat unexpectedly, the antimicrobial (MIC) values correlated with the MBIC and MBEC values, which has not been seen for several other AMP/antibiofilm peptides. Our results demonstrate that short Trp- and Arg-rich peptides merit further studies as antibiofilm agents that could be deployed to address part of the antimicrobial resistance problem.</p>\",\"PeriodicalId\":8775,\"journal\":{\"name\":\"Biochemistry and Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2024-0183\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2024-0183","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

最近,几种长度从 12 到 37 个残基不等的抗菌肽 (AMP) 被证明可作为抗生物膜剂。在此,我们报告了以四种不同的富含 Trp 和 Arg 的 AMP(包括从牛乳铁蛋白中提取的 RRWQWR-NH2 肽)为模型的 23 种六肽的研究。这些肽针对致病性革兰氏阴性绿脓杆菌 PAO1 株和革兰氏阳性金黄色葡萄球菌 MRSA 株进行了测试。这两种菌株都能表达 GFP 蛋白,荧光检测用于测量肽阻止生物膜形成(MBIC)或导致已形成的生物膜破裂(MBEC)的能力。使用标准的水晶紫染料检测法也可获得类似的抗生物膜活性。大多数富含Trp和Arg的六肽对革兰氏阳性金黄色葡萄球菌MRSA菌株具有强效的抗生物膜活性。特别是含有 3 个 Arg 和 3 个 Trp 的六肽,尤其是含有 3 个 Trp 的六肽非常有效。有些出乎意料的是,抗菌(MIC)值与 MBIC 和 MBEC 值相关,这在其他一些 AMP/抗生物膜肽中是没有的。我们的研究结果表明,富含 Trp 和 Arg 的短肽作为抗生物膜剂值得进一步研究,可用于解决部分抗菌药耐药性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antibiofilm activities of lactoferricin-related Trp- and Arg-rich antimicrobial hexapeptides against pathogenic Staphylococcus aureus and Pseudomonas aeruginosa strains.

Recently, several antimicrobial peptides (AMPs), varying in length from 12 to 37 residues, have been shown to act as antibiofilm agents. Here, we report a study of 23 hexapeptides modeled after four different Trp- and Arg-rich AMPs, including the RRWQWR-NH2 peptide, derived from bovine lactoferrin. They were tested against the pathogenic Gram-negative Pseudomonas aeruginosa PAO1 strain and a Gram-positive Staphylococcus aureus MRSA strain. Both strains were engineered to express the green fluorescent protein (GFP) protein, and fluorescence detection was used to measure the ability of the peptides to prevent biofilm formation (minimum biofilm inhibitory concentration (MBIC)) or to cause the breakdown of established biofilms (minimum biofilm eradication concentration (MBEC)). Similar antibiofilm activities were obtained with the standard crystal violet dye assay. Most Trp- and Arg-rich hexapeptides displayed a potent antibiofilm activity against the Gram-positive S. aureus MRSA strain. In particular, hexapeptides with 3 Arg and 3 Trp were very effective, especially when they contained the three Trp in sequence. Somewhat unexpectedly, the antimicrobial (MIC) values correlated with the MBIC and MBEC values, which has not been seen for several other AMP/antibiofilm peptides. Our results demonstrate that short Trp- and Arg-rich peptides merit further studies as antibiofilm agents that could be deployed to address part of the antimicrobial resistance problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry and Cell Biology
Biochemistry and Cell Biology 生物-生化与分子生物学
CiteScore
6.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Published since 1929, Biochemistry and Cell Biology explores every aspect of general biochemistry and includes up-to-date coverage of experimental research into cellular and molecular biology in eukaryotes, as well as review articles on topics of current interest and notes contributed by recognized international experts. Special issues each year are dedicated to expanding new areas of research in biochemistry and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信