牛乳铁蛋白通过PI3K/Akt/mTOR通路抑制子宫内膜异位症基质细胞的增殖。

IF 2.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Akiko Nakamura, Yuji Tanaka, Shunichiro Tsuji, Tsukuru Amano, Akie Takebayashi, Akimasa Takahashi, Ayako Inatomi, Tetsuro Hanada, Takashi Murakami
{"title":"牛乳铁蛋白通过PI3K/Akt/mTOR通路抑制子宫内膜异位症基质细胞的增殖。","authors":"Akiko Nakamura, Yuji Tanaka, Shunichiro Tsuji, Tsukuru Amano, Akie Takebayashi, Akimasa Takahashi, Ayako Inatomi, Tetsuro Hanada, Takashi Murakami","doi":"10.1139/bcb-2025-0014","DOIUrl":null,"url":null,"abstract":"<p><p>The most common medical therapy for endometriosis suppresses ovulation, which is a barrier for patients planning pregnancy. To address this issue, we focused on the cell proliferation-suppressing effects of lactoferrin, which reportedly in various malignant tumours. Despite being a benign disease, endometriotic cells have similar characteristics to malignant tumours, which may be involved in its onset and progression. Endometriotic and endometrial stromal cells were obtained from patients with endometriosis. After culture with 1 mg/mL of bovine lactoferrin, cell proliferation was significantly suppressed in endometriotic stromal cells compared to controls, but this remained unchanged in endometrial stromal cells. Bovine lactoferrin also significantly increased the number of endometriotic stromal cells in the G0/G1 phase and significantly decreased those in the S phase, and suppressed the protein expression of phosphorylated-AKT, phosphorylated-mTOR, phosphorylated-S6K, and cyclin D1. Bovine lactoferrin inhibits the transition from the G1 to the S phase by suppressing the PI3K/Akt/mTOR pathway and reducing the synthesis of cyclin D1, thereby arresting the cell cycle at the G1 phase. Bovine lactoferrin suppressed the proliferation of endometriotic stromal cells without suppressing the proliferation of endometrial stromal cells. Lactoferrin, which allows for pregnancy and lactation during administration, has potential as a novel therapeutic candidate for endometriosis.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bovine lactoferrin suppresses the proliferation of endometriotic stromal cells via the PI3K/Akt/mTOR pathway.\",\"authors\":\"Akiko Nakamura, Yuji Tanaka, Shunichiro Tsuji, Tsukuru Amano, Akie Takebayashi, Akimasa Takahashi, Ayako Inatomi, Tetsuro Hanada, Takashi Murakami\",\"doi\":\"10.1139/bcb-2025-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The most common medical therapy for endometriosis suppresses ovulation, which is a barrier for patients planning pregnancy. To address this issue, we focused on the cell proliferation-suppressing effects of lactoferrin, which reportedly in various malignant tumours. Despite being a benign disease, endometriotic cells have similar characteristics to malignant tumours, which may be involved in its onset and progression. Endometriotic and endometrial stromal cells were obtained from patients with endometriosis. After culture with 1 mg/mL of bovine lactoferrin, cell proliferation was significantly suppressed in endometriotic stromal cells compared to controls, but this remained unchanged in endometrial stromal cells. Bovine lactoferrin also significantly increased the number of endometriotic stromal cells in the G0/G1 phase and significantly decreased those in the S phase, and suppressed the protein expression of phosphorylated-AKT, phosphorylated-mTOR, phosphorylated-S6K, and cyclin D1. Bovine lactoferrin inhibits the transition from the G1 to the S phase by suppressing the PI3K/Akt/mTOR pathway and reducing the synthesis of cyclin D1, thereby arresting the cell cycle at the G1 phase. Bovine lactoferrin suppressed the proliferation of endometriotic stromal cells without suppressing the proliferation of endometrial stromal cells. Lactoferrin, which allows for pregnancy and lactation during administration, has potential as a novel therapeutic candidate for endometriosis.</p>\",\"PeriodicalId\":8775,\"journal\":{\"name\":\"Biochemistry and Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2025-0014\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2025-0014","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

子宫内膜异位症最常见的药物治疗是抑制排卵,这对计划怀孕的患者来说是一个障碍。为了解决这个问题,我们专注于乳铁蛋白的细胞增殖抑制作用,据报道,它在各种恶性肿瘤中。尽管是一种良性疾病,但子宫内膜异位症细胞具有与恶性肿瘤相似的特征,这可能与其发生和发展有关。从子宫内膜异位症患者获得子宫内膜异位症和子宫内膜间质细胞。用1mg /mL牛乳铁蛋白培养后,与对照组相比,子宫内膜异位症间质细胞的细胞增殖明显受到抑制,但在子宫内膜间质细胞中保持不变。牛乳铁蛋白还能显著增加G0/G1期子宫内膜异位症基质细胞数量,显著减少S期子宫内膜异位症基质细胞数量,抑制磷酸化- akt、磷酸化- mtor、磷酸化- s6k和cyclin D1蛋白表达。牛乳铁蛋白通过抑制PI3K/Akt/mTOR通路,减少细胞周期蛋白D1的合成,从而抑制G1期到S期的转变,从而使细胞周期阻滞在G1期。牛乳铁蛋白对子宫内膜异位症间质细胞增殖有抑制作用,但对子宫内膜间质细胞增殖无抑制作用。乳铁蛋白,允许怀孕和哺乳期间给药,有潜力作为一种新的治疗候选子宫内膜异位症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bovine lactoferrin suppresses the proliferation of endometriotic stromal cells via the PI3K/Akt/mTOR pathway.

The most common medical therapy for endometriosis suppresses ovulation, which is a barrier for patients planning pregnancy. To address this issue, we focused on the cell proliferation-suppressing effects of lactoferrin, which reportedly in various malignant tumours. Despite being a benign disease, endometriotic cells have similar characteristics to malignant tumours, which may be involved in its onset and progression. Endometriotic and endometrial stromal cells were obtained from patients with endometriosis. After culture with 1 mg/mL of bovine lactoferrin, cell proliferation was significantly suppressed in endometriotic stromal cells compared to controls, but this remained unchanged in endometrial stromal cells. Bovine lactoferrin also significantly increased the number of endometriotic stromal cells in the G0/G1 phase and significantly decreased those in the S phase, and suppressed the protein expression of phosphorylated-AKT, phosphorylated-mTOR, phosphorylated-S6K, and cyclin D1. Bovine lactoferrin inhibits the transition from the G1 to the S phase by suppressing the PI3K/Akt/mTOR pathway and reducing the synthesis of cyclin D1, thereby arresting the cell cycle at the G1 phase. Bovine lactoferrin suppressed the proliferation of endometriotic stromal cells without suppressing the proliferation of endometrial stromal cells. Lactoferrin, which allows for pregnancy and lactation during administration, has potential as a novel therapeutic candidate for endometriosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry and Cell Biology
Biochemistry and Cell Biology 生物-生化与分子生物学
CiteScore
6.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Published since 1929, Biochemistry and Cell Biology explores every aspect of general biochemistry and includes up-to-date coverage of experimental research into cellular and molecular biology in eukaryotes, as well as review articles on topics of current interest and notes contributed by recognized international experts. Special issues each year are dedicated to expanding new areas of research in biochemistry and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信