Nidhi Rai , Shashi Pandey Rai , Birinchi Kumar Sarma
{"title":"Trichoderma asperellum (T42)-mediated expression of CabHLH genes enhances nitrogen use efficiency and nutritional values of chickpea under salt and Fusarium wilt stresses","authors":"Nidhi Rai , Shashi Pandey Rai , Birinchi Kumar Sarma","doi":"10.1016/j.bcab.2025.103507","DOIUrl":"10.1016/j.bcab.2025.103507","url":null,"abstract":"<div><div><em>Trichoderma asperellum</em> T42 combats diverse phytopathogens and other stresses. However, its impact under combined stresses in modulating nutritional value and antioxidant properties in edible plant parts has not been thoroughly studied. Three chickpea cultivars, viz., wilt-resistant (JG-315), wilt-tolerant (JG-36), and wilt-susceptible (JG-62), were used to assess nutritional value and antioxidant contents under salt and pathogen (<em>Foc</em>)-challenged conditions. A sharp decrease in nodule numbers and biomass was observed in plants challenged with the combined stresses of <em>Foc</em> and salt in all three cultivars. However, seed treatment with T42 restored the nutritional value, enhanced antioxidant activities (1–2 folds) and increased total phenolic content (1.3–1.5 folds), protein (19–28%), proline, and micronutrients (7–28%) in chickpea seeds, particularly in the T42-treated plants subjected to the combined stress compared to the plants subjected to the combined stress without T42. The expression of two chickpea bHLH transcription factor genes, <em>CabHLH114</em> and <em>CabHLH115</em>, associated with nodule development and nitrogen fixation, varied under different stresses. The genes were upregulated in T42-treated plants and correlated with the development of root nodules. The results thus suggest that <em>Trichoderma</em>-mediated expression of both nodulation-responsive genes led to the formation of healthy and functional nodules, which helped improve nitrogen use efficiency in the chickpea plants and contributed to the nutritional value of the chickpea seeds. The results highlighted that reduction in nutritional value due to environmental stresses could be restored in crop plants by applying potential bioagents such as T42 that restore nutritional quality and make the crops climate resilient.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"64 ","pages":"Article 103507"},"PeriodicalIF":3.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nutritional profile, chemical composition and health promoting properties of Salicornia emerici Duval-Jouve and Sarcocornia alpini (Lag.) Rivas Mart. from southern Tunisia","authors":"Nesrine Harboub , Hedi Mighri , Naima Bennour , Mohamed Dbara , Catarina Pereira , Naima Chouikhi , Luísa Custódio , Raoudha Abdellaoui , Ahmed Akrout","doi":"10.1016/j.bcab.2025.103502","DOIUrl":"10.1016/j.bcab.2025.103502","url":null,"abstract":"<div><div>The aerial biomass of the edible halophyte species <em>Salicornia emerici</em> Duval-Jouve and <em>Sarcocornia alpini</em> (Lag.) Rivas Mart. (Amaranthaceae), collected from southeastern Tunisia, was analyzed for its potential as a source of functional bioactive ingredients. For this purpose, the dried biomass was analyzed for its proximate and mineral composition, while its hydroethanolic extracts were evaluated for phenolic content by spectrophotometric and chromatographic techniques (HPLC-ESI-MS). The extracts were also assessed for <em>in vitro</em> antioxidant properties, including radical scavenging activity (RSA) against DPPH and ABTS<sup>•+</sup> radicals, as well as ferric reducing antioxidant power (FRAP). Furthermore, they were evaluated for <em>in vitro</em> cytotoxicity and enzymatic inhibition toward key enzymes related to human diseases, namely acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) (Alzheimer's disease: AD), α-amylase and α-glucosidase (type 2 Diabetes Mellitus: T2DM), and tyrosinase (skin hyperpigmentation disorders). The findings revealed that both halophytes contained significant levels of minerals, particularly sodium, potassium, and iron. The extracts were rich in bioactive phytochemicals, with naringin identified as the major compound in <em>S. alpini</em>, while quinic acid was predominant in <em>S. emerici</em>. Extracts from both species were non-toxic and demonstrated significant antioxidant properties. Neither species exhibited inhibitory activity toward cholinesterases; however, both showed strong α-glucosidase inhibition (>50%), with <em>S. alpini</em> also displaying superior tyrosinase inhibition activity (51%). These findings suggest that <em>S. alpini</em> and <em>S. emerici</em> hold promise as safe and sustainable sources of nutrients and natural compounds with antioxidant, anti-diabetic, and anti-tyrosinase properties. This potential could translate into significant economic benefits for the southeastern region of Tunisia.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"64 ","pages":"Article 103502"},"PeriodicalIF":3.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the wound healing potential of biocompatible nano-hydroxyapatite derived from parrotfish scale (Scarrus ghobban) waste for bone tissue engineering","authors":"Surya Parthasarathy , Palanisamy Arulselvan , Radha Gosala , Balakumar Subramanian","doi":"10.1016/j.bcab.2025.103493","DOIUrl":"10.1016/j.bcab.2025.103493","url":null,"abstract":"<div><div>Fish waste management and the development of sustainable applications for fish byproducts have gained significant importance in recent times. This study focuses on repurposing discarded fish scales from <em>Scarus ghobban</em> to synthesize nano-hydroxyapatite (n-HAp) using an alkaline hydrolysis method. The n-HAp was comprehensively characterized through various analytical techniques, including FESEM, FT-IR, XRD, and TEM. The results revealed the successful production of n-HAp particles with an average size of 20–50 nm and the presence of functional groups such as esters, ethers, halogen compounds, and nitriles along with secondary amines, phenols, and alcohols which contribute to enhanced material characteristics. Additionally, through elemental mapping minerals such as Calcium, Phosphorous, Magnesium, and Sodium were confirmed. Cytotoxicity tests using L929 fibroblast cells demonstrated biocompatibility and wound healing assays indicated its potential for tissue regeneration. This approach not only harnesses valuable resources from fish waste but also holds promise for various biomedical applications, contributing to both economic growth and environmental sustainability. Ultimately, this nano-hydroxyapatite derived from fish scales showcases remarkable biocompatibility, positioning it as a promising candidate for the development of wound dressings.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"64 ","pages":"Article 103493"},"PeriodicalIF":3.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andreísa Teixeira de Castro , Angélica Cristina de Souza , Cristina Ferreira Silva , Silvia Juliana Martinez , Rosane Freitas Schwan , Disney Ribeiro Dias
{"title":"Biotechnological valorization of yeast strains for lipids and carotenoids production from renewable resources","authors":"Andreísa Teixeira de Castro , Angélica Cristina de Souza , Cristina Ferreira Silva , Silvia Juliana Martinez , Rosane Freitas Schwan , Disney Ribeiro Dias","doi":"10.1016/j.bcab.2025.103499","DOIUrl":"10.1016/j.bcab.2025.103499","url":null,"abstract":"<div><div>This study aimed to select yeast strains from the Agricultural Microbiology Culture Collection (CCMA) to produce lipids and/or carotenoids using crude glycerol and sugarcane molasses as alternative carbon sources. Among the selected strains, nine exhibited oleaginous characteristics, with <em>Torulaspora maleeae</em> (CCMA 0039) reaching the highest accumulation of lipid content (77.7%) in the glucose medium. Notably, the <em>Exophiala spinifera</em> (CCMA, 2073) strain exhibited 35% lipid accumulation in glycerol pure. Furthermore, <em>Rhodotorula dairenensis</em> (CCMA 945), <em>Rhodotorula mucilaginosa</em> (CCMA 0156), <em>Rhodosporidium toruloides</em> (CCMA, 2032) and <em>Cystofilobasidium ferigula</em> (CCMA 1623) were identified as carotenogenic. Crude glycerol has proven to be the most effective medium for lipogenesis and carotenogenesis, also expressing diversity in fatty acid profiles, with <em>C. ferigula</em> demonstrating promise in the coproduction of lipids and carotenoids, achieving 41.88% lipid accumulation and 2.76 μg/mL of total carotenoids. These findings highlight the potential for utilizing industrial by-products for the sustainable production of important metabolites, paving the way for their integration into industrial bioprocesses.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"64 ","pages":"Article 103499"},"PeriodicalIF":3.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed Haroun , Ali Barham , Juanjuan Wang , Xiaoqing Qian
{"title":"Emerging compost extract for heavy metal bioremediation and preserving the antioxidant activity of celery cabbage: A sustainable approach","authors":"Mohammed Haroun , Ali Barham , Juanjuan Wang , Xiaoqing Qian","doi":"10.1016/j.bcab.2024.103483","DOIUrl":"10.1016/j.bcab.2024.103483","url":null,"abstract":"<div><div>The study examined the efficiency of a combined bioadditive containing molasses with <em>Bacillus firmus</em> and <em>Pseudomonas aeruginosa</em> in the production of compost extract and their impact on the physiochemical, heavy metals bioremediation, and antioxidant activity in the plant. The methods involved aeration and a compost-to-water ratio of 1:10, following the CRD. The extract physiochemical parameters were measured. The extract heavy metals were determined according to ICP-MS (inductively coupled plasma-mass spectrometry). The activities of catalase, peroxidase, ascorbate peroxidase, and superoxide dismutase were determined using the methods of liquid portion. The results showed significant improvements in the pH from 5.5 to 8, Ec from 7.1 to 8.2, and O.M from 27.5% to 50%. The TN increased from 0.14 to 0.203 mg/kg, TP from 0.46 to 1.24 mg/kg, TK from 0.25 to 0.58 mg/kg, Ca from 20.3 to 25.11 mg/kg, and Mg from 10.75 to 7.75 mg/kg. Besides, the heavy metal bioremediation; Fe was lightly reduced from 8.3 to 7.4 mg/kg, Zn from 1.0 to 0.1 mg/kg, Cu from 0.1 to 0.01 mg/kg, and Cd from 0.1 to 0.02 mg/kg. CE significantly improved plant shoot and dry weight. The antioxidant activity of SOD and POD was significantly higher than APX and CAT. A positive correlation between physiochemical properties and heavy metals, while a negative correlation with antioxidant activity, specifically APX and POD. Beneficially, the application of CE enhances antioxidant enzyme activities, reduces heavy metal uptake in plants, and adopts healthier growth, thereby supporting sustainable agricultural practices.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"64 ","pages":"Article 103483"},"PeriodicalIF":3.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143148748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adnan Khan , Athar Ali Khan , Sayma Samreen , Moh Sajid Ansari , Syed Aiman Hasan , Mohd Irfan
{"title":"Morphological, ultrastructural, biochemical and yield attributes variations in Nigella sativa L. by cadmium (Cd) stress: Implications for human health risk assessment","authors":"Adnan Khan , Athar Ali Khan , Sayma Samreen , Moh Sajid Ansari , Syed Aiman Hasan , Mohd Irfan","doi":"10.1016/j.bcab.2025.103514","DOIUrl":"10.1016/j.bcab.2025.103514","url":null,"abstract":"<div><div>This study was conducted in the pots where each pot was filled with 4 kg soil that was contaminated with varying concentrations of cadmium (Cd) which are 1.5 mM, 2.0 mM, 2.5 mM, 3.0 mM, 3.5 mM, and 4.0 mM equal to 168.61, 224.82, 281, 337.23, 393.44 and 449.64 mg/L respectively), except the control group, each treatment was replicated thrice (n = 3) including control. We evaluated and examined growth, yield, metal stress tolerance, and metal buildup characteristics at the harvesting stage of black cumin (Nigella sativa L.) plants. The findings indicated that all levels of Cd had a substantial (p ≤ 0.05) negative impact on black cumin plants' growth and yield-related characteristics. Low (1.5 mM) to high doses (4.0 mM) of Cd significantly (<em>p</em> ≤ 0.05) reduced chlorophyll <em>a</em> (30%–72%), chlorophyll <em>b</em> (25%–69%) and total chlorophyll (56% to 82%) levels in the fresh leaf tissues, as well as significantly (<em>p</em> ≤ 0.05) decreased the fruit yield (12%–45%) and seed yield (39%–75%) of black cumin plants. Energy dispersive x-ray (EDX) analysis and scanning electron microscopy (SEM) of control and Cd-treated plant leaf samples showed significant Cd accumulation, and the ultrastructure of both revealed that Cd stress reduced the stomatal density and size of the stomatal aperture compared to the control. Bioaccumulation levels of Cd in the seeds of all treated plants are above the threshold limit (0.3 mg/kg) set by the World Health Organization (WHO) for medicinal plants and are unsafe for human consumption. Therefore, farmers must avoid cultivating black cumin crops in Cd polluted soil from economic and health perspectives.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"64 ","pages":"Article 103514"},"PeriodicalIF":3.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143369765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular mechanisms underlying the decolorization of indigo carmine and coomassie blue R-250 by Streptomyces salinarius CS29 laccase","authors":"Kamonpan Sanachai , Bodee Nutho , Rakrudee Sarnthima , Wiyada Mongkolthanaruk , Jirada Pluemjai , Methus Kittika , Saranyu Khammuang","doi":"10.1016/j.bcab.2025.103513","DOIUrl":"10.1016/j.bcab.2025.103513","url":null,"abstract":"<div><div>Laccase, a multicopper oxidase enzyme, possesses broad substrate specificity, enabling the oxidation of a diverse array of compounds. Among various microbial sources, <em>Streptomyces</em> species are prominent for producing stable and highly efficient laccases. This study investigated the decolorization potential of crude laccase extracted from <em>Streptomyces salinarius</em> CS29, specifically targeting indigo carmine and Coomassie Blue R-250 (CBBR). Optimal decolorization of both dyes was achieved within a pH range of 3–3.5, with pH 3.5 selected for subsequent experiments. Indigo carmine, at a concentration of 100 μM, demonstrated superior decolorization efficiency, reaching approximately 90% within 100 min. In contrast, decolorization of CBBR was less efficient. At concentrations of 50, 100, and 250 μM, approximately 50% decolorization was observed after 180 min. These findings suggest that laccase from <em>S. salinarius</em> CS29 exhibits greater efficacy in decolorizing indigo carmine compared to CBBR. Additionally, molecular docking and molecular dynamics (MD) simulations were employed to investigate the structural dynamics of the enzyme-dye complexes. MD simulations revealed that both indigo carmine and CBBR bind within the active site of the enzyme, predominantly through van der Waals interactions. Furthermore, key binding residues crucial for these interactions were identified. The findings of this study offer a foundational understanding that could significantly contribute to the development of environmentally sustainable strategies for the detoxification of dye-contaminated wastewater.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"64 ","pages":"Article 103513"},"PeriodicalIF":3.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143204541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Camilo Martinez , Lina Davila , Robin Zuluaga , Armando Ricardo , Jorge Figueroa , Maria Goreti de Almeida Oliveira , Yaremis Meriño-Cabrera
{"title":"Production of bacterial cellulose from banana waste (Musa paradisiaca): A sustainable material for making cardboard paper","authors":"Juan Camilo Martinez , Lina Davila , Robin Zuluaga , Armando Ricardo , Jorge Figueroa , Maria Goreti de Almeida Oliveira , Yaremis Meriño-Cabrera","doi":"10.1016/j.bcab.2024.103484","DOIUrl":"10.1016/j.bcab.2024.103484","url":null,"abstract":"<div><div>Bacterial cellulose (BC) is a biopolymer with advantages over plant cellulose, but its high cost has led to the search for alternative substrates. In Colombia, banana processing generates organic waste that can be utilized for BC production. Thus, the aim of this study was to assess the feasibility of using banana pulp waste (<em>Musa paradisiaca</em>) as an alternative carbon source in culture media for BC production by the bacteria <em>K. xylinus</em> and analyze its physicochemical properties and applicability in cardboard manufacturing. It was found that the 1:2 ratio of banana pulp to water yielded the highest BC production, suggesting greater nutrient availability in this ratio. A pH of 4.4 proved optimal for BC production, providing an appropriate acidic environment for bacterial growth. After optimizing the culture medium, BC yield increased significantly, with the production reaching up to 30 g/L, demonstrating the effectiveness of optimizing the substrate ratio and pH in enhancing cellulose synthesis. Physicochemical tests confirmed the purity of the obtained BC, with structural characteristics consistent with expected cellulose. Furthermore, cardboard made with this BC exhibited superior mechanical properties, with greater tensile and compression strength compared to the control cardboard, indicating enhanced durability and strength for industrial use. In conclusion, the use of banana waste as a carbon source for BC production offers a promising solution with significant economic and environmental benefits. The optimization of cultivation conditions, such as ratio and pH, and the confirmation of final product purity and quality, underscore the potential of this approach for sustainable industrial applications in biomaterial production.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"63 ","pages":"Article 103484"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143179658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phytohormone delivered through GRAS nano-platform promoting plant root growth: A promising strategy towards sustainable agricultural practices","authors":"Edwin Davidson , Jacqueline Tejada , Giulio Diracca , Preeti Maiti , Swadeshmukul Santra","doi":"10.1016/j.bcab.2024.103474","DOIUrl":"10.1016/j.bcab.2024.103474","url":null,"abstract":"<div><div>Global food security will impose a major challenge in the years to come. The use of nanoscale delivery platforms in the agricultural sector holds the promise to provide a more sustainable alternative compared to conventional delivery of agrochemicals. Therefore, there is an imperative need to develop robust and cost-effective nanoscale delivery platforms. This work reports a nanodelivery system using tannic acid and polyvinylpyrrolidone (TA-PVP), GRAS ingredients, as a crop management tool to deliver plant growth regulators (PGR) for sustainable agriculture. Particularly, indole-3-acetic acid (IAA), a member of the auxin class of phytohormone due to the high hydrophobicity and degradability that limited its commercialization. The IAA nanoparticles (IAA NP) showed enhanced chemical stability in solution and sustained release, described by the Ritger and Korsmeyer–Peppas models. The non-phytotoxicity properties were studied with tomato seedlings up to 2500 ppm of IAA and the in vitro non-cytotoxicity was demonstrated with macrophages (J774A.1) and dermal fibroblasts (HDF) at the concentration below 39 ppm of IAA. Root growth and plant health assessments indicated enhanced root length and no detrimental impact on photosynthesis at 1 ppm IAA. Furthermore, the phosphomonoesterase activity was enhanced boosting the phosphorus metabolism. This study supports nano-enabled PGR delivery for sustainable agriculture.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"63 ","pages":"Article 103474"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143179691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Technological advancements for the management of chromium: An unavoidable pollutant for plants","authors":"Anuj Choudhary , Harmanjot Kaur , Saurabh Awasthi , Monika Koul , Sahil Mehta , Azamal Husen","doi":"10.1016/j.bcab.2024.103466","DOIUrl":"10.1016/j.bcab.2024.103466","url":null,"abstract":"<div><div>Chromium (Cr) is a naturally occurring metal and an emerging heavy metal pollutant. With a surge in agricultural activities and industrial revolution, Cr accumulation is rising incrementally in the environment posing serious threats to all living entities. The toxicity and mobility of Cr (VI) is more compared to Cr (III) in living systems. Cr toxicity in soil and its further uptake in the plants affects the plants at pre-reproductive and post-reproductive stages and is manifested through changes in photosynthesis, seed formation, and seed germination primarily. High Cr levels in soil disturb the soil ecosystem further affecting water and nutrient uptake, which consequently affects many other physiological processes. The present paper is a comprehensive account of Cr toxicity in plants and highlights the most prevalent Cr remediation strategies based on physical, chemical, and biological methods. The use of novel methods using membrane systems like ultrafiltration, nanofiltration, reverse osmosis, etc. is increasingly being used in Cr remediation. The efficacy and efficiency of methods have been further evaluated. Contemporary research on Cr toxicity, the role of Cr in both plants and soil, and its ecological and environmental consequences on the environment have also been elucidated. However, with the advent of modern tools and techniques, Cr remediation methods have been modified. Research in the field of nanotechnology and information technology and further advancements in mitigating Cr remediation will be witnessed in the future.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"63 ","pages":"Article 103466"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143181321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}