Biochemical Engineering Journal最新文献

筛选
英文 中文
Enhanced biocatalytic production of cortisol by protein engineering and process engineering 通过蛋白质工程和工艺工程提高生物催化生产皮质醇的能力
IF 3.7 3区 生物学
Biochemical Engineering Journal Pub Date : 2024-09-16 DOI: 10.1016/j.bej.2024.109497
{"title":"Enhanced biocatalytic production of cortisol by protein engineering and process engineering","authors":"","doi":"10.1016/j.bej.2024.109497","DOIUrl":"10.1016/j.bej.2024.109497","url":null,"abstract":"<div><p>Cortisol, the primary glucocorticoid in humans, plays crucial physiological functions and serves as an intermediate for synthesizing other glucocorticoids. Currently, cortisol production mainly relies on a semi-synthetic route, where the key step of introducing 11β-OH into 11-deoxycortisol is catalyzed by the filamentous fungi <em>Curvularia lunata</em> and <em>Absidia orchidis</em>. This method, however, generates by-products and involves lengthy cultivation. To achieve specific and efficient production of cortisol, we constructed a recombinant biocatalyst by expressing and engineering the human mitochondrial 11β-hydroxylase CYP11B1 in <em>Escherichia coli</em>. Firstly, the balance between CYP11B1 and its redox partners AdR and Adx was regulated through ribosome binding site (RBS) engineering, resulting in a slight increase in cortisol productivity (from 344±19 mg·L<sup>−1</sup>·d<sup>−1</sup> to 407±7 mg·L<sup>−1</sup>·d<sup>−1</sup>). Subsequently, the heterologous expression of CYP11B1 was improved through application of the computational design tool PROSS, generating a triple mutant S169V/H354D/L463F with 87.5 % higher cortisol yield than the wild type. Finally, the catalytic performance was improved by optimizing the recombinant protein expression conditions and enhancing the substrate solubility in the reaction system, further elevating the productivity of cortisol to 2.8±0.1 g·L<sup>−1</sup>·d<sup>−1</sup>. To our knowledge, this is the highest ever reported cortisol productivity using a human 11β-hydroxylase-based biocatalyst.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of flowsheet modeling for scheduling and debottlenecking analysis to support the development and scale-up of a plasma-derived therapeutic protein purification process 应用流程表建模进行调度和去瓶颈分析,以支持血浆治疗蛋白纯化工艺的开发和放大
IF 3.7 3区 生物学
Biochemical Engineering Journal Pub Date : 2024-09-16 DOI: 10.1016/j.bej.2024.109501
{"title":"Application of flowsheet modeling for scheduling and debottlenecking analysis to support the development and scale-up of a plasma-derived therapeutic protein purification process","authors":"","doi":"10.1016/j.bej.2024.109501","DOIUrl":"10.1016/j.bej.2024.109501","url":null,"abstract":"<div><p>Plasma fractionation stands as a pivotal process for the production of therapeutic and diagnostic proteins, such as albumin and immunoglobulin G. Besides these two primary proteins in human plasma, numerous other proteins can be purified for therapeutic purposes. To support process development, a flowsheet modeling-based approach is utilized to improve production efficiency and productivity while minimizing the resource investments. The flowsheet model is first built to represent the baseline drug substance production process at pilot-scale, with operating parameters extrapolated from lab-scale experiments conducted at CSL Behring. To improve operational efficiency and save costs, throughput analysis is applied to enhance the batch throughput through new process design, scheduling, and bottleneck identification. Through implementing the strategies, the batch throughput could be increased by 47.2 % by introducing one additional operator and one buffer preparation tank into the process. Furthermore, after applying a new strategy involving multiple extractions of the initial material (paste), the batch throughput was doubled, with operating cost of goods reduced by 36.1 %. To assess the performance of the modified design and validate the model results, the pilot-scale experiments with two extractions were performed by CSL Behring and compared with model predictions, resulting in good agreement. This work demonstrates the potential of flowsheet modeling in facilitating process development from lab-scale to pilot-scale, fostering cost-effective and efficient production with limited resource investment.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced 4-hydroxybutyrate incorporation into the PHA terpolymer of Haloferax mediterranei by heterologous expression of 4-hydroxybutyrate-CoA transferases/synthetases 通过异源表达 4-hydroxybutyrate-CoA 转移酶/合成酶,提高 4-hydroxybutyrate 与 Haloferax mediterranei 的 PHA 三元共聚物的结合率
IF 3.7 3区 生物学
Biochemical Engineering Journal Pub Date : 2024-09-16 DOI: 10.1016/j.bej.2024.109498
{"title":"Enhanced 4-hydroxybutyrate incorporation into the PHA terpolymer of Haloferax mediterranei by heterologous expression of 4-hydroxybutyrate-CoA transferases/synthetases","authors":"","doi":"10.1016/j.bej.2024.109498","DOIUrl":"10.1016/j.bej.2024.109498","url":null,"abstract":"<div><p>The polyhydroxyalkanoate terpolymer, P[(3HB)-<em>co</em>-(3HV)-<em>co</em>-(4HB)], is a promising plastic alternative for specialized applications, notably in medical and pharmaceutical sectors. <em>Haloferax mediterranei</em> (Hfx), an extreme halophile archaeon, is a P[(3HB)-<em>co</em>-(3HV)-<em>co</em>-(4HB)] terpolymer production host, however the native molar proportion of 4HB incorporated into the terpolymer is low. To improve incorporation, four 4-hydroxybutyrate-CoA transferases/synthetases from <em>Clostridum kluyveri</em> (OrfZ), <em>Clostridium aminobutyricum</em> (AbfT), <em>Nitrosopumilis maritimus</em> (<em>Nm</em>CAT), and <em>Cupriavidus necator</em> N-1 (<em>Cn</em>CAT), were heterologously expressed in <em>H. mediterranei</em>, and evaluated for their ability to supply 4HB-CoA for PHA terpolymer production. Growth, PHA synthesis, and polymer composition were evaluated for the four heterologous strains in shake-flask, with Hfx_<em>Nm</em>CAT demonstrating superior growth, terpolymer titre and 4HB molar ratio. Co-feeding with γ-butyrolactone was optimised, and Hfx_<em>Nm</em>CAT was further evaluated under fed-batch fermentation where a maximum PHA titre of 0.7 g/L, containing 52 mol% 4HB, was achieved. This is an order of magnitude improvement in 4HB terpolymer incorporation by <em>H. mediterranei</em>.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369703X24002857/pdfft?md5=60a4fb113b5f3b07c8167e7aee0152f1&pid=1-s2.0-S1369703X24002857-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced stability and catalytic performance of immobilized phospholipase D on chitosan-encapsulated magnetic nanoparticles using oxidized dextran and glutaraldehyde as cross-linkers 以氧化葡聚糖和戊二醛为交联剂,提高壳聚糖封装磁性纳米粒子上固定化磷脂酶 D 的稳定性和催化性能
IF 3.7 3区 生物学
Biochemical Engineering Journal Pub Date : 2024-09-16 DOI: 10.1016/j.bej.2024.109499
{"title":"Enhanced stability and catalytic performance of immobilized phospholipase D on chitosan-encapsulated magnetic nanoparticles using oxidized dextran and glutaraldehyde as cross-linkers","authors":"","doi":"10.1016/j.bej.2024.109499","DOIUrl":"10.1016/j.bej.2024.109499","url":null,"abstract":"<div><p>Phospholipase D (PLD) is essential for the bioconversion of phosphatidylcholine (PC) to phosphatidylserine (PS), a process valuable in functional food and medicine. This study explores the stability and catalytic properties of PLD immobilized on chitosan-encapsulated magnetic nanoparticles (CMNPs), utilizing oxidized dextran (DX) and glutaraldehyde (Glu) as cross-linkers. The cross-linker concentration and immobilization time were optimized to assess their effects on PLD catalytic performance. PLD immobilized on CMNPs with DX (DX-CMNPs-PLD) exhibited optimal activity at pH 8.0 and 30 °C, retaining over 40 % activity after 14 cycles, while Glu-cross-linked PLD (Glu-CMNPs-PLD) retained approximately 65 %. DX-CMNPs-PLD demonstrated superior pH, temperature, and operational stability compared to free PLD. Additionally, the immobilized PLD was characterized using transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Kinetics parameters (V<sub>max</sub> and K<sub>m</sub>) of the immobilized PLD were also studied with free PLD serving as a control. Conformational analyses indicated a significant change in PLD's secondary structure, particularly in β-sheet content, which likely contributed to the enhanced stability and activity. These findings suggest a promising approach for PLD immobilization on CMNPs, with notable implications for biotechnological applications.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous nitrogen and phosphorus removal by immobilized bacterial particles of denitrifying phosphorus accumulating microorganisms and its application 利用固定化反硝化聚磷微生物菌粒同时脱氮除磷及其应用
IF 3.7 3区 生物学
Biochemical Engineering Journal Pub Date : 2024-09-16 DOI: 10.1016/j.bej.2024.109495
{"title":"Simultaneous nitrogen and phosphorus removal by immobilized bacterial particles of denitrifying phosphorus accumulating microorganisms and its application","authors":"","doi":"10.1016/j.bej.2024.109495","DOIUrl":"10.1016/j.bej.2024.109495","url":null,"abstract":"<div><p><em>Enterobacter cloacae</em> G, a novel denitrifying phosphorus-accumulating bacterial strain, was isolated from anaerobic sludge tank of a wastewater treatment plant used for pig farms. It was discovered that a pH of 7, a temperature of 30°C, an initial phosphorus concentration of 8 mg/L, and a C/N ratio of 10 were the strain's ideal growth conditions. To ensure the stability of strain G in wastewater treatment, strain G was immobilized by 5 % polyvinyl alcohol, 2 % sodium alginate, and 0.6 g of biochar and crosslinked for 9 h in 4 % calcium chloride saturated boric acid solution via an orthogonal test. After the immobilized microspheres were introduced into the sequencing batch reactor (SBR), the nitrate and phosphate removal rates achieved were 89.36 % and 65.53 %, respectively, with a hydraulic retention time (HRT) of 8 hours, a pH of 7.5, and a C/N ratio of 4.5. The immobilized microspheres containing strain G demonstrated potential for the treatment of nitrogen-rich and phosphorus-rich wastewater.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon monoxide conversion by anaerobic microbiome in a thermophilic trickle bed reactor 嗜热涓流床反应器中厌氧微生物群对一氧化碳的转化
IF 3.7 3区 生物学
Biochemical Engineering Journal Pub Date : 2024-09-15 DOI: 10.1016/j.bej.2024.109492
{"title":"Carbon monoxide conversion by anaerobic microbiome in a thermophilic trickle bed reactor","authors":"","doi":"10.1016/j.bej.2024.109492","DOIUrl":"10.1016/j.bej.2024.109492","url":null,"abstract":"<div><p>Biomethanation offers a promising route for the valorization of synthesis gas, yet significant challenges arise from the limited conversion of carbon monoxide (CO). This study investigated the adaptation of an anaerobic microbiome in a continuous trickle bed reactor (TBR) with CO as the sole carbon and energy source. We evaluated reactor performance and microbial community changes under different CO loading rates and gas retention times (GRT). Optimal performance was achieved at a CO loading rate of 5.16 Nm³ m⁻³ d⁻¹ and a GRT of 60.6 min, resulting in average production rates of 0.99 Nm³ m⁻³ d⁻¹ for CH₄ and 2.55 Nm⁻³ m⁻³ d⁻¹ for CO₂, with an 88 % CO conversion rate. Microbial analysis indicated that the community was dominated by the genus <em>Methanothermobacter,</em> known for its ability to utilize CO as a sole substrate, followed by a co-dominance of syntrophic acetate-oxidizing bacteria <em>Syntrophaceticus</em>. This syntrophic relationship between <em>Methanothermobacter</em> and <em>Syntrophaceticus</em> is expected to be crucial for the efficient CO conversion process. Additionally, the study proposes a two-reactor system for converting synthesis gas to grid-quality methane.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369703X24002791/pdfft?md5=fe1de2fb3487b7b8e94ffe489fb35626&pid=1-s2.0-S1369703X24002791-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recombinant laccase biosynthesis for efficient polydopamine coating 用于高效多巴胺涂层的重组漆酶生物合成
IF 3.7 3区 生物学
Biochemical Engineering Journal Pub Date : 2024-09-10 DOI: 10.1016/j.bej.2024.109483
{"title":"Recombinant laccase biosynthesis for efficient polydopamine coating","authors":"","doi":"10.1016/j.bej.2024.109483","DOIUrl":"10.1016/j.bej.2024.109483","url":null,"abstract":"<div><p>Laccases are versatile biocatalysts with interest for various industrial applications. This study reports the expression of <em>Trametes versicolor</em> laccase in <em>Komagataella phaffii</em> X33. The cultivation parameters (methanol and CuSO<sub>4</sub> concentration, and temperature) for recombinant laccase production were studied in an orbital shaker. Enhanced laccase production was achieved by adding 1 % (v/v) methanol daily, supplementing 0.1 mM CuSO<sub>4</sub> and incubating at 25 °C. Under these conditions, laccase production was scaled-up in a 4 L stirred tank bioreactor. Subsequently, laccase was concentrated and purified using a combined protocol of ultrafiltration and acetone precipitation, achieving a purification factor of 3.02. The laccase produced exhibited robust stability within a pH range from 4.0 to 8.0 and thermal stability up to 30 °C. Michaelis Menten kinetic revealed Michaelis constant (K<sub>M</sub>) and maximum rate of reaction (V<sub>max</sub>) values of 44.5 µM and 110.9 µM/min, respectively. Finally, laccase was employed as a biocatalyst to assist the polymerization of dopamine to polydopamine, allowing the one-step coating of cellulose filter paper, as confirmed by diffuse reflectance spectroscopy (UV-Vis DRS) and scanning electron microscopy (SEM). This work represents an advance in the field of laccase production in both orbital shaker and bioreactor, while demonstrating, for the first time, the laccase-assisted polymerization of dopamine for the coating of filter paper with polydopamine.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369703X24002705/pdfft?md5=a30d00d716812dfb2d817cfbe5f0c0f3&pid=1-s2.0-S1369703X24002705-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving mannanase production in Bacillus subtilis for fibre hydrolysis during solid-state fermentation of palm kernel meal 提高枯草芽孢杆菌的甘露聚糖酶产量,以便在棕榈仁粕固态发酵过程中水解纤维
IF 3.7 3区 生物学
Biochemical Engineering Journal Pub Date : 2024-09-07 DOI: 10.1016/j.bej.2024.109479
{"title":"Improving mannanase production in Bacillus subtilis for fibre hydrolysis during solid-state fermentation of palm kernel meal","authors":"","doi":"10.1016/j.bej.2024.109479","DOIUrl":"10.1016/j.bej.2024.109479","url":null,"abstract":"<div><p>The primary challenge in utilizing palm kernel meal (PKM, an agricultural by-product) as non-ruminant livestock feed is its high fibre content, predominantly in the form of mannan. Microbial fermentation offers an economically favourable alternative to enzyme supplementation for breaking down fibre in lignocellulosic biomass. In a recent study, our group isolated a <em>B. subtilis</em> strain F6 with a fast response time for mannanase production upon exposure to PKM. This work focuses on improving the mannanase production of the <em>B. subtilis</em> strain to achieve greater fibre hydrolysis of PKM without extending fermentation time. Mannanase GmuG, sourced from <em>B. subtilis</em> F6 and verified for its hydrolytic activity on PKM fibre, was homologously expressed using a replicative plasmid (pBE-S). Enzyme production was systematically improved by optimizing various regulatory elements, including the promoter, ribosome binding site, and signal peptide. Consequently, the neutral detergent fibre content of PKM was substantially reduced by 36.4 % in 22 h of solid-state fermentation using the engineered strain. Lastly, the highest mannanase-producing strain was examined for scaled-up fermentation. The impacts of fermentation on fibre and protein contents, as well as the surface morphology of PKM, were analysed. The outcomes of this study offer an efficient method for robust mannanase expression in <em>B. subtilis</em> and its potential application in the biotransformation of PKM and other mannan-rich bioresources for improved feed utilization.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model development and process evaluation for algal growth and lipid production 藻类生长和脂质生产的模型开发和工艺评估
IF 3.7 3区 生物学
Biochemical Engineering Journal Pub Date : 2024-09-06 DOI: 10.1016/j.bej.2024.109485
{"title":"Model development and process evaluation for algal growth and lipid production","authors":"","doi":"10.1016/j.bej.2024.109485","DOIUrl":"10.1016/j.bej.2024.109485","url":null,"abstract":"<div><p>Microalgae grabbed the attention worldwide because of their application in renewable energy with a number of environmental benefits such as carbon dioxide assimilation to produce biofuel. In this study, a kinetic model aiming to analyze algae growth and lipid production was developed. Biomass was divided into two parts, algae residual cell and lipid, to analyze their kinetics distinctively and to find out the inside process mechanism. The model was calibrated and validated with different experimental datasets, varying carbon sources, and phosphate concentrations. The capability of the model to predict the dynamics of algal culture over a broad range of growth conditions was investigated. The presence of acetate reduced the bicarbonate uptake for algal growth and growth on organic carbon was higher compared to that of carbon dioxide. The presence of ammonium showed a very strong inhibition effect on algae and lipid production rate but enhanced lipid content. Phosphate caused both limitation and inhibition effects on algae growth and lipid production rate. The maximum growth was found at 12 mg/L PO<sub>4</sub><sup>3-</sup> concentration and 3.10 mg/L NO<sub>3</sub><sup>-</sup>-N concentration. Lipid content was enhanced by limiting phosphate. Overall, the developed model allows optimizing of nutrient concentrations and operating conditions specifically to enhance lipid productivity.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular electron transfer-enhanced sulfamethoxazole biodegradation: Mechanisms and process strengthening 细胞外电子传递增强磺胺甲噁唑的生物降解:机理和过程强化
IF 3.7 3区 生物学
Biochemical Engineering Journal Pub Date : 2024-09-04 DOI: 10.1016/j.bej.2024.109484
{"title":"Extracellular electron transfer-enhanced sulfamethoxazole biodegradation: Mechanisms and process strengthening","authors":"","doi":"10.1016/j.bej.2024.109484","DOIUrl":"10.1016/j.bej.2024.109484","url":null,"abstract":"<div><p>Antibiotics like Sulfamethoxazole (SMX) pose a significant threat to public health and environmental well-being. To address this issue, effective strategies are being developed to remove antibiotics from the environment. This study investigates the degradation of SMX with a focus on elucidating the mechanism by which extracellular electron transfer (EET) enhances the efficient degradation of the antibiotic. The results show that SMX was significantly degraded (97 %) by <em>Shewanella oneidensis</em> MR-1 after 120 hours in the presence of a bioelectrochemical system (BES) at a concentration of 1 mg L<sup>−1</sup>, compared to the absence of BES (69 %) at the same concentration and time. BES was observed to simultaneously remove pollutants like SMX while generating electricity at this concentration. Proteomic analysis was further employed to clarify the mechanism behind this process. Three key SMX-degrading proteins; S-ribosylhomocysteine lyase (luxS), Deoxyribose-phosphate aldolase (deoC), and Amidohydrolase which mainly participated in C-S cleavage, S-N hydrolysis and isoxazole ring cleavage were identified. The study demonstrates that <em>S. oneidensis</em> MR-1 can promote the generation of Nicotinamide Adenine Dinucleotide and Adenosine Triphosphate and facilitate electron transfer to enhance the efficient degradation of SMX. The findings of this study provide new insights into the correlation mechanism between SMX degradation and EET, ultimately contributing to innovative solutions for environmental remediation.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信