Assay and drug development technologies最新文献

筛选
英文 中文
Optimization of Lurasidone HCl-Loaded PLGA Nanoparticles for Intramuscular Delivery: Enhanced Bioavailability, Reduced Dosing Frequency, Pharmacokinetics, and Therapeutic Outcomes. 优化用于肌内给药的 Lurasidone HCl-Loaded PLGA 纳米颗粒:提高生物利用度、减少给药次数、药代动力学和治疗效果。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-02-01 Epub Date: 2023-12-27 DOI: 10.1089/adt.2023.089
Nikita Macwan, Hemil S Patel, Rakesh K Sharma, Nihali Jain, Hemal Tandel
{"title":"Optimization of Lurasidone HCl-Loaded PLGA Nanoparticles for Intramuscular Delivery: Enhanced Bioavailability, Reduced Dosing Frequency, Pharmacokinetics, and Therapeutic Outcomes.","authors":"Nikita Macwan, Hemil S Patel, Rakesh K Sharma, Nihali Jain, Hemal Tandel","doi":"10.1089/adt.2023.089","DOIUrl":"10.1089/adt.2023.089","url":null,"abstract":"<p><p><i>This study aimed to develop a nanoparticle drug delivery system using poly (lactic-co-glycolic acid) (PLGA) for enhancing the therapeutic efficacy of lurasidone hydrochloride (LH) in treatment of schizophrenia through intramuscular injection. LH-loaded PLGA nanoparticles (LH-PNPs) were prepared using the nanoprecipitation technique and their physicochemical characteristics were assessed. Particle size (PS), zeta potential, morphology, % encapsulation efficiency, % drug loading, drug content, and solid-state properties were analyzed. Stability,</i> in vitro <i>release, and</i> in vivo <i>pharmacokinetic studies were conducted to evaluate the therapeutic efficacy of the developed LH-PNPs. The optimized batch of LH-PNPs exhibited a narrow and uniform PS distribution before and after lyophilization, with sizes of 112.7 ± 1.8 nm and 115.0 ± 1.3 nm, respectively, and a low polydispersity index. The PNPs showed high drug entrapment efficiency, drug loading, and drug content uniformity. Solid-state characterization indicated good stability and compatibility, with a nonamorphous state. The drug release profile demonstrated sustained release behavior. Intramuscular administration of LH-PNPs in rats resulted in a significantly prolonged mean residence time compared with the drug suspension. These findings highlight that intramuscular delivery of the LH-PNP formulation is a promising approach for enhancing the therapeutic efficacy of LH in treatment of schizophrenia.</i></p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Validation of Reverse-Phase High-Performance Liquid Chromatography Method for Simultaneous Estimation of Doxorubicin and Clotrimazole. 用于同时测定多柔比星和克霉唑的反相高效液相色谱法的开发与验证
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-02-01 Epub Date: 2023-12-27 DOI: 10.1089/adt.2023.057
Priyanka Sharma, Bhupinder Kapoor, Md Sadique Hussain, Gurvinder Singh, Pooja Rani, Balraj Saini, Pankaj Wadhwa, Rajesh Kumar
{"title":"Development and Validation of Reverse-Phase High-Performance Liquid Chromatography Method for Simultaneous Estimation of Doxorubicin and Clotrimazole.","authors":"Priyanka Sharma, Bhupinder Kapoor, Md Sadique Hussain, Gurvinder Singh, Pooja Rani, Balraj Saini, Pankaj Wadhwa, Rajesh Kumar","doi":"10.1089/adt.2023.057","DOIUrl":"10.1089/adt.2023.057","url":null,"abstract":"<p><p><i>A reverse-phase high-performance liquid chromatographic (RP-HPLC) method was developed to analyze the simultaneous estimation of doxorubicin and clotrimazole. The method was achieved by Nucleodur C18 column with dimension 250 × 4.6 mm (5 μm) using gradient elution. The mobile phase contained 0.2% formic acid (pH 3.2) and acetonitrile. The flow rate was kept at 1.0 mL/min and detection and quantitation of both drugs (doxorubicin and clotrimazole) were achieved using a photodiode array detector at 276 nm, which was the isosbestic point for both drugs. The proposed method was validated according to the current International Council for Harmonization of Technical Requirements of Pharmaceuticals for Human Use guidelines for specificity, linearity, accuracy, precision, and robustness. The developed method showed a linear response (</i>R<i><sup>2</sup> > 0.999), and was accurate (recoveries 97%-103%), precise (resolution ≤1.0%), sensitive, and specific. Thus, the developed RP-HPLC method for the simultaneous estimation of both drugs was successfully validated and can be utilized for the estimation of these drugs in the formulations being developed.</i></p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoliposomes Embedded Nanocochleates for Codelivery of Artemether and Lumefantrine: An In Vitro and In Vivo Study. 纳米脂质体嵌入纳米絮凝剂用于蒿甲醚和卢曼芬特林的重塑给药:体外和体内研究。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-02-01 Epub Date: 2024-01-09 DOI: 10.1089/adt.2023.031
Dyandevi Mathure, Prashant Sonawane, Hemantkumar Ranpise, Rajendra Awasthi
{"title":"Nanoliposomes Embedded Nanocochleates for Codelivery of Artemether and Lumefantrine: An <i>In Vitro</i> and <i>In Vivo</i> Study.","authors":"Dyandevi Mathure, Prashant Sonawane, Hemantkumar Ranpise, Rajendra Awasthi","doi":"10.1089/adt.2023.031","DOIUrl":"10.1089/adt.2023.031","url":null,"abstract":"<p><p><i>Antimalarial drugs are being encapsulated in nanotechnology-based carriers because there are not enough new treatment options and people are becoming more resistant to the ones that are already available. This approach uses two or more biochemical targets of malarial parasites. The codelivery of artemether and lumefantrine (AL) combines the synergistic effect of artemether for an early onset of action followed by the prolonged effect of lumefantrine. The bioavailability of artemether and lumefantrine is low due to their low solubility. Thus, an alternative lipidic formulation, namely nanocochleate, was developed for the selected drugs by adding calcium ions into preformed nanoliposomes (AL-loaded liposomes). Using phospholipon 90H and cholesterol, a thin-film hydration method produced drug-loaded liposomes. The synthesized AL-loaded liposomes were further incorporated into nanocochleates. The formulations were evaluated for</i> in vitro <i>and</i> in vivo <i>parameters. Nanocochleates had a particle size of 200.7 nm, a zeta potential of -9.4 mV, and an entrapment efficiency of 73.12%</i> ± <i>1.82% and 61.46%</i> ± <i>0.78%, respectively, for artemether and lumefantrine. Whereas liposomes had a particle size of 210 nm and an entrapment efficiency of 67.34%</i> ± <i>1.52% and 53.24%</i> ± <i>0.78%, respectively, for artemether and lumefantrine. An X-ray diffraction study confirmed the amorphous state of artemether and lumefantrine in liposomes and nanocochleate. Nanocochleate showed a controlled release profile for loaded drugs. When compared with free drugs, nanocochleate showed low tissue distribution and a 20-fold increase in bioavailability in rats. Thus, nanocochleate offers an interesting alternative to an existing dosage form for the treatment of malaria.</i></p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139401568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Molecular Docking As an Interpretative Tool for Molecular Targets in Disease Management. 分子对接作为疾病管理中分子靶点的解释工具综述。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-01-01 DOI: 10.1089/adt.2023.060
Divya Sahu, Lokendra Singh Rathor, Shradha Devi Dwivedi, Kamal Shah, Nagendra Singh Chauhan, Manju Rawat Singh, Deependra Singh
{"title":"A Review on Molecular Docking As an Interpretative Tool for Molecular Targets in Disease Management.","authors":"Divya Sahu, Lokendra Singh Rathor, Shradha Devi Dwivedi, Kamal Shah, Nagendra Singh Chauhan, Manju Rawat Singh, Deependra Singh","doi":"10.1089/adt.2023.060","DOIUrl":"10.1089/adt.2023.060","url":null,"abstract":"<p><p>One of the most often utilized methods for drug discovery is molecular docking. With docking, one may discover new therapeutically relevant molecules by targeting the molecule and predicting the target-ligand interactions as well as different conformation of ligand at various positions. The prediction signifies the effectiveness of the molecule or the developed molecule having different affinity with target. Drug discovery plays an important role in the development of a new drug molecule of different moiety attached to it, which leads us in the management of several diseases. <i>In silico</i> approach led us to identification of numerous diseases caused by virus, fungi, bacteria, protozoa, and other microorganisms that affect human health. By means of computational approach, we can categorize disease symptoms and use the drugs available for such types of warning signs. After the docking process, molecular dynamics computational technique helps in the simulation of the physical movement of atoms and molecules for a fixed period of time, giving a view of the dynamic evaluation of the system. This review is an attempt to illustrate the role of molecular docking in drug development.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139485063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quality by Design Assisted Development of Luliconazole Transethosomes in Gel for the Management of Candida albicans Infection. 质量源于设计辅助开发用于治疗白色念珠菌感染的卢利康唑经溶胶体。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-01-01 Epub Date: 2023-12-29 DOI: 10.1089/adt.2023.059
Gurmeet Singh, Raj Kumar Narang
{"title":"Quality by Design Assisted Development of Luliconazole Transethosomes in Gel for the Management of <i>Candida albicans</i> Infection.","authors":"Gurmeet Singh, Raj Kumar Narang","doi":"10.1089/adt.2023.059","DOIUrl":"10.1089/adt.2023.059","url":null,"abstract":"<p><p>The objective of this study was to develop and evaluate a novel vesicular formulation of luliconazole (LUL) for the management of <i>Candida albicans</i> infection through a topical route. LUL-loaded transethosomes (LUL-TE) were prepared by the film hydration method and various independent and dependent variables were optimized using the Box-Behnken design. Selected critical material attributes were the content of phospholipids (X1), concentration of ethanol (X2), and amount of sodium cholate (X3). Formulated LUL-TE were characterized for percent entrapment efficiency, percent drug loading, vesicle size, and polydispersity index (PDI) and were incorporated into the carbomer gel base and further evaluated for gel characterizations. The prepared transethosomal gel (LUL-TE-CHG) was evaluated for pH, spreadability, viscosity, antifungal activity, and <i>in vitro</i> study. From the observed results, it was evident that the prepared LUL-TE-CHG was in the desired pH (6.2 ± 0.45), spreadability [8.3 ± 0.42 g/(cm·s)], viscosity (236.1-19.2.26 mPa·s), nanovesicle size (252 ± 9.82), entrapment efficiency (85% ± 5.24%), zeta potential (-34.05 ± 3.52 mV), and PDI (0.233 ± 0.002). The zone of inhibition results suggested that the LUL-TE-CHG formulation has the highest antifungal activity, that is, 5.83 ± 0.15 mm<sup>3</sup>. The <i>in vitro</i> results showed that drug release within 2 h was 18.1% ± 2.0% and after that sustained release action, 83.2% ± 1.7% within 8 h. Finally, to confirm the therapeutic efficacy of the developed formulation, fungal infection was induced by using C. albicans in Wistar rats. <i>In vivo</i>, skin irritation study and histopathology studies were performed in the disease-induced model. Animal experiments revealed that LUL-TE-CHG has significantly improved the diseased condition in Wistar rats. The results observed from the skin permeation and skin deposition profile ensure that the prepared novel LUL-loaded TE system had a higher permeation rate and increased retention time compared with LUL-CHG. The hydrogel incorporated with LUL could be a novel approach with safe and effective fungal treatment.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for ASSAY and Drug Development Technologies. 罗莎琳德-富兰克林学会自豪地宣布 2023 年度 ASSAY 和药物开发技术奖得主。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-01-01 DOI: 10.1089/adt.2024.87345.rfs2023
Emily Laura Krozel Days
{"title":"Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for ASSAY and Drug Development Technologies.","authors":"Emily Laura Krozel Days","doi":"10.1089/adt.2024.87345.rfs2023","DOIUrl":"https://doi.org/10.1089/adt.2024.87345.rfs2023","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of Quality by Design Approaches for Development and Validation of Reverse-Phase High-Performance Liquid Chromatography Assay Method for Determination of Glycyrrhizin in Nanoformulation. 采用 "质量源于设计 "方法开发和验证用于测定纳米制剂中甘草苷的反相高效液相色谱分析方法
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-01-01 Epub Date: 2023-12-26 DOI: 10.1089/adt.2023.087
Jitu Halder, Ivy Saha, Tushar Kanti Rajwar, Biswakanth Kar, Goutam Ghosh, Goutam Rath
{"title":"Implementation of Quality by Design Approaches for Development and Validation of Reverse-Phase High-Performance Liquid Chromatography Assay Method for Determination of Glycyrrhizin in Nanoformulation.","authors":"Jitu Halder, Ivy Saha, Tushar Kanti Rajwar, Biswakanth Kar, Goutam Ghosh, Goutam Rath","doi":"10.1089/adt.2023.087","DOIUrl":"10.1089/adt.2023.087","url":null,"abstract":"<p><p>Glycyrrhizin (GL) is the principal constituent of <i>Glycyrrhiza glabra</i>, having antiallergic, anticancer, anti-inflammatory, and antimicrobial action. The reverse-phase high-performance liquid chromatography (RP-HPLC) analytical method was used to quantitatively estimate GL in a nanoformulation and validated as per International Conference on Harmonization Q2 (R1) standards. A stationary phase of the C18-HL reversed-phase column and a mobile phase of acetonitrile and water were used for effective elution. The chromatographic conditions of RP-HPLC were optimized utilizing a quality-by-design approach to accomplish the required chromatographic separation of GL from its nanoformulation with minimal experimental runs. Optimized RP-HPLC conditions for the assay method consist of acetonitrile (41%) and water, pH 1.8, balanced with phosphoric acid (0.1%) as a mobile phase with a flow rate of 1 mL/min. The retention time was found at 7.25 min, and method validation confirmed its sensitivity, preciseness, accuracy, and robustness.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Characterization of Novel Chitosan-Coated Curcumin Nanophytosomes for Treating Drug-Resistant Malaria. 用于治疗耐药性疟疾的新型壳聚糖包裹姜黄素纳米叶绿体的开发与表征
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-01-01 Epub Date: 2023-12-27 DOI: 10.1089/adt.2023.064
Bhargav Eranti, Padmanabha Reddy Yiragamreddy, Koteshwara Kunnatur Balasundara
{"title":"Development and Characterization of Novel Chitosan-Coated Curcumin Nanophytosomes for Treating Drug-Resistant Malaria.","authors":"Bhargav Eranti, Padmanabha Reddy Yiragamreddy, Koteshwara Kunnatur Balasundara","doi":"10.1089/adt.2023.064","DOIUrl":"10.1089/adt.2023.064","url":null,"abstract":"<p><p>This study aimed at enhancing the efficacy of curcumin (CR) by formulating and coating it with chitosan. <i>In silico</i> molecular docking studies revealed that CR exhibited almost similar and low binding energies when compared to artemisinin, indicating high stability at the target site. It can be confirmed that CR is effective in treating and reducing <i>Plasmodium falciparum</i> parasites. Fourier transform infrared studies confirmed that there was a shift and disappearance of some drug peaks in the formulation which revealed complexation with phospholipids. The F2EXT3-developed formulation exhibited greater solubility (24.31 ± 3.47 μg/mL) when compared to pure CR (7.99 ± 1.95 μg/mL). Proton nuclear magnetic resonance studies confirmed the formation of Curcumin-phospholipid hydrogen bonding in F2EXT3. The <i>in vitro</i> drug release studies revealed that the developed formulation F2EXT3 exhibited better drug release at 71.98% at 48 h; this might be due to the effective entrapment efficiency of the drug inside the phospholipid, presence of polyethylene glycol 4000 and chitosan further assisted in sustained release of the drug. Scanning electron microscopy studies revealed that optimized F2EXT3 CR nanophytosomes were nearly spherical with narrow size distribution and smooth surface. The zeta potential of the F2EXT3 showed -3.5 mV. Stability studies revealed that the formulation remained stable even after 6 months. It was observed from the hemin assay that CR and F2EXT3 exhibited (50 μg/mL curcumin) exhibited IC<sub>50</sub> values of 47 ± 2.45 and 22 ± 1.58 μM, respectively. Further <i>in vivo</i> antimalarial activity on resistant and sensitive strains needs to be performed to evaluate the efficacy of the developed formulation.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 2023. 鸣谢 2023 年审稿人。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2023-12-22 DOI: 10.1089/adt.2023.29105.ack
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/adt.2023.29105.ack","DOIUrl":"https://doi.org/10.1089/adt.2023.29105.ack","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138827961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 2023. 鸣谢 2023 年审稿人。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2023-12-20 DOI: 10.1089/vio.2023.29036.ack
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/vio.2023.29036.ack","DOIUrl":"https://doi.org/10.1089/vio.2023.29036.ack","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138954483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信