Assay and drug development technologies最新文献

筛选
英文 中文
Drug Repurposing Patent Applications July-September 2022. 药物再利用专利申请2022年7月至9月。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2022-12-01 DOI: 10.1089/adt.2022.097
Hermann A M Mucke
{"title":"Drug Repurposing Patent Applications July-September 2022.","authors":"Hermann A M Mucke","doi":"10.1089/adt.2022.097","DOIUrl":"https://doi.org/10.1089/adt.2022.097","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 8","pages":"359-366"},"PeriodicalIF":1.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10412199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential Assessment of Topical Felbinac-Loaded Cubosomal Gel in Soft Tissue Injury in Albino Rats. 外用负载felbinac的立方体凝胶治疗白化大鼠软组织损伤的潜力评估。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2022-12-01 DOI: 10.1089/adt.2022.063
Snigdha Bhardwaj, Anshul, Praveen Kumar Gaur, Sonam Bhatia
{"title":"Potential Assessment of Topical Felbinac-Loaded Cubosomal Gel in Soft Tissue Injury in Albino Rats.","authors":"Snigdha Bhardwaj,&nbsp;Anshul,&nbsp;Praveen Kumar Gaur,&nbsp;Sonam Bhatia","doi":"10.1089/adt.2022.063","DOIUrl":"https://doi.org/10.1089/adt.2022.063","url":null,"abstract":"<p><p>Muscle strain is one of the most common injuries with high intermittence rate. Due to diverseness of strain injuries, different experimental animal models are employed to investigate such injuries with reproducible results. Cubosomes, an emerging nano drug delivery tool, are considered ideal carriers for the topical delivery of lipophilic drugs to treat local inflammations with reduced frequency of application for prolonged periods. This work describes the development of Felbinac-loaded cubosomal gel and investigated the treatment of inflammation and tissue injury <i>in vivo</i>. Sciatic Function Index (SFI) is a simple clinical method to observe hind limb recovery in rats after induced injuries. First, cubosomes were fabricated by high-pressure homogenization process and evaluated for <i>in vitro</i> parameters. The optimized cubosome formulation was chosen to develop cubosomal gel and evaluated for <i>in</i> vitro parameters and also investigated time to recovery of SFI after strain induction in tibialis anterior muscles in rats. The cubosome formulation (F4) exhibited low droplet size (51.04 ± 1.37 nm)and polydispersity index (0.085 ± 1.13), and negative zeta potential (-32.8 ± 0.67 mV). In rats, topical application of cubosomal gel formulation (CGF) exhibited significant improvement in skin permeation (402 ± 6.08 μg) and drug flux (15.71 ± 0.82 μg/cm<sup>2</sup> h) compared to plain gel. Also, CGF demonstrated significant difference in SFI from first to seventh day. The histology of rat skin showed significant effect for groups treated with Felbinac-loaded CGF compared to a negative control group.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 8","pages":"367-376"},"PeriodicalIF":1.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10413074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Healing Potential of Propolis Extract-Passiflora edulis Seed Oil Emulgel Against Excisional Wound: Biochemical, Histopathological, and Cytokines Level Evidence. 蜂胶提取物-西番莲籽油凝胶对切除伤口的愈合潜力:生化、组织病理学和细胞因子水平证据。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2022-10-01 DOI: 10.1089/adt.2022.075
Puneet Gupta, Ashish Singh, Neelam Singh, Faraat Ali, Ayushi Tyagi, Sadish K Shanmugam
{"title":"Healing Potential of Propolis Extract-<i>Passiflora edulis</i> Seed Oil Emulgel Against Excisional Wound: Biochemical, Histopathological, and Cytokines Level Evidence.","authors":"Puneet Gupta,&nbsp;Ashish Singh,&nbsp;Neelam Singh,&nbsp;Faraat Ali,&nbsp;Ayushi Tyagi,&nbsp;Sadish K Shanmugam","doi":"10.1089/adt.2022.075","DOIUrl":"https://doi.org/10.1089/adt.2022.075","url":null,"abstract":"<p><p>Propolis is rich in natural bioactive compounds, and considering its importance for many skin therapies, emulgel was prepared. This study examines how a propolis extract (PE) and Passiflora edulis seed (PS) oil emulgel affect rat deep skin wound healing. Based on preset criteria of maximum drug content and optimum drug permeation through the stratum corneum along with drug retention in the skin layers, an optimized emulgel formula based on Box-Behnken factorial design was prepared and used for subsequent <i>in vitro</i> and <i>in vivo</i> evaluations. <i>In vivo</i> wound-healing activities of emulgel and control treatments were investigated in a rat model. The optimized emulgel formula exhibited superior healing activity compared with plain PE suspension-treated rats on day 14 of wounding. Histopathological investigations of hematoxylin and eosin and Masson's Trichrome-stained skin sections supported this effect. Emulgel promotes cutaneous wound healing through a variety of mechanisms, including anti-inflammatory through modulation of cytokines tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 production, and promotion of collagen fiber formation, all of which contribute to tissue remodeling. Furthermore, when compared with propolis suspension, emulgel showed significant antioxidant and anti-inflammatory effects. Emulgel significantly increased the skin's hydroxyproline level, antioxidant potential, wound contraction, increased penetration, and localized propolis deposition across the skin. Incorporation of PS oil into the emulgel accelerates the tissue regeneration process. The findings suggest that 5% propolis emulgel could be used as an alternative to treat wounds.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 7","pages":"300-316"},"PeriodicalIF":1.8,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40561376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Letter to the Editor: 3D Printing Has an Imperative Role in Colitis Management. 致编辑的信:3D打印在结肠炎管理中起着至关重要的作用。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2022-10-01 Epub Date: 2022-10-11 DOI: 10.1089/adt.2022.078
Sarmili Sahoo, Amandeep Singh
{"title":"<i>Letter to the Editor:</i> 3D Printing Has an Imperative Role in Colitis Management.","authors":"Sarmili Sahoo,&nbsp;Amandeep Singh","doi":"10.1089/adt.2022.078","DOIUrl":"https://doi.org/10.1089/adt.2022.078","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 7","pages":"295-297"},"PeriodicalIF":1.8,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40561373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Editor's Response to a Letter on "3D Printing Has an Imperative Role in Colitis Management" by Sahoo and Singh. 编辑对Sahoo和Singh关于“3D打印在结肠炎管理中起着至关重要的作用”的信的回应。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2022-10-01 Epub Date: 2022-10-11 DOI: 10.1089/adt.2022.29101.bjm
Bruce J Melancon
{"title":"Editor's Response to a Letter on \"3D Printing Has an Imperative Role in Colitis Management\" by Sahoo and Singh.","authors":"Bruce J Melancon","doi":"10.1089/adt.2022.29101.bjm","DOIUrl":"https://doi.org/10.1089/adt.2022.29101.bjm","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 7","pages":"298-299"},"PeriodicalIF":1.8,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40561375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Design of Phosphatidylinositol 3-Kinase Inhibitors. 磷脂酰肌醇3激酶抑制剂的计算设计。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2022-10-01 DOI: 10.1089/adt.2022.057
Isha Rani, Anju Goyal, M Sharma
{"title":"Computational Design of Phosphatidylinositol 3-Kinase Inhibitors.","authors":"Isha Rani,&nbsp;Anju Goyal,&nbsp;M Sharma","doi":"10.1089/adt.2022.057","DOIUrl":"https://doi.org/10.1089/adt.2022.057","url":null,"abstract":"<p><p>\u0000 <i>One of the most sought-after therapeutic targets for treating human cancers is the phosphoinositide 3-kinase; PI3k is an integral part of the PI3K/protein kinase B signaling arcade. This pathway is frequently activated in malignancies. Drug resistance and dose-limiting adverse effects are currently associated challenges with the existing anticancer chemotherapy. Therefore, in this research, a series of pyrimidine derivatives were designed and evaluated against human PI3K by using molecular docking analysis. The docking results were further verified by molecular dynamic simulation, which analyzed the strength of the macromolecular complex with respect to time. Compounds IV and XIV were found to be the most potent inhibitors of the human PI3K receptor with a high degree of stability within the active site of the target receptor for a timeframe of 50 ns. Thus, both of these compounds could be important drug candidates for the development of PI3K inhibitors as a prospective anticancer agent.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 7","pages":"317-337"},"PeriodicalIF":1.8,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40561374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Drug Repurposing Patent Applications March: June 2022. 药物再利用专利申请3月:2022年6月。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2022-08-23 DOI: 10.1089/adt.2022.065
H. Mucke
{"title":"Drug Repurposing Patent Applications March: June 2022.","authors":"H. Mucke","doi":"10.1089/adt.2022.065","DOIUrl":"https://doi.org/10.1089/adt.2022.065","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42502329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Review on Delivery and Bioavailability Enhancement Strategies of Azithromycin. 阿奇霉素给药及提高生物利用度策略研究进展。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2022-08-01 Epub Date: 2022-09-08 DOI: 10.1089/adt.2022.036
Pallavi Swarup, Gopal Prasad Agrawal
{"title":"A Review on Delivery and Bioavailability Enhancement Strategies of Azithromycin.","authors":"Pallavi Swarup,&nbsp;Gopal Prasad Agrawal","doi":"10.1089/adt.2022.036","DOIUrl":"https://doi.org/10.1089/adt.2022.036","url":null,"abstract":"<p><p>Azithromycin (AZI) belongs to the class of macrolide antibiotics that has limited water solubility and belongs to Biopharmaceutical Classification System Class II. Dissolution is the rate-limiting step in the absorption process of AZI. Several approaches have been investigated for enhancing the bioavailability of poorly soluble drugs. This review intends to explore the various strategies that have been investigated for improving the solubility and/or bioavailability of AZI and the delivery systems that have been designed for delivery of AZI in ocular fluid.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 6","pages":"251-257"},"PeriodicalIF":1.8,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33449341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dual Acting Immuno-Antibiotics: Computational Investigation on Antibacterial Efficacy of Immune Boosters Against Isoprenoid H Enzyme. 双作用免疫抗生素:免疫增强剂对类异戊二烯H酶抑菌效果的计算研究。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2022-07-01 Epub Date: 2022-07-12 DOI: 10.1089/adt.2022.038
Hitesh Jamod, Kajal Mehta, Arpit Sakariya, Shweta Shoukani, Bharat Kumar Reddy Sanapalli, Vidyasrilekha Yele
{"title":"Dual Acting Immuno-Antibiotics: Computational Investigation on Antibacterial Efficacy of Immune Boosters Against Isoprenoid H Enzyme.","authors":"Hitesh Jamod,&nbsp;Kajal Mehta,&nbsp;Arpit Sakariya,&nbsp;Shweta Shoukani,&nbsp;Bharat Kumar Reddy Sanapalli,&nbsp;Vidyasrilekha Yele","doi":"10.1089/adt.2022.038","DOIUrl":"https://doi.org/10.1089/adt.2022.038","url":null,"abstract":"<p><p>Drug-resistant infections have become a serious threat to human health in the past two decades. Global Antimicrobial Surveillance (GLASS) in January 2018 reported widespread antibiotic resistance among 1.5 million people infected with bacteria across 22 countries. According to prominent economist Jim O'Neil, antimicrobial resistance is estimated to kill ∼10 million people affected by microorganisms each year by 2050. Even though multiple therapeutics are now available to treat the infections, more and more bacterial strains have acquired resistance to these treatments through various techniques. Moreover, the decrease in the pipeline of antibacterial medicines under clinical development has become a significant problem. In this scenario, the development of novel antibiotics that act on untapped pathways is necessary to combat the bacterial infections. Isoprenoid H (IspH) synthetase has become an attractive antibacterial target as there is no human homologue. IspH is an enzyme involved in methyl-d-erythritol phosphate (MEP) pathway of isoprenoid synthesis and is conserved in gram-negative bacteria, mycobacteria, and apicomplexans. Since, IspH is a novel therapeutic target, explorations are only just beginning, and despite the progress made in this area, no single IspH inhibitor is available in the market for therapeutic use. In this article, we have repurposed 35 immune boosters against IspH enzyme using methods such as extra-precision docking and Molecular Mechanics Generalized Born Surface Area (MMGBSA). Among them, 4'-fluorouridine was found to be active because of its glide score and significant binding affinity with IspH enzyme. Furthermore, this study requires more <i>in vitro, in vivo</i>, and molecular dynamics studies to support our findings.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 5","pages":"225-236"},"PeriodicalIF":1.8,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40505553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Formulation and Characterization of Nanostructured Lipid Carriers of Rizatriptan Benzoate-Loaded In Situ Nasal Gel for Brain Targeting. 苯甲酸利扎曲坦原位鼻凝胶纳米结构脂质载体的制备与表征。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2022-07-01 Epub Date: 2022-06-30 DOI: 10.1089/adt.2022.044
Dyandevi Mathure, Hemantkumar Ranpise, Rajendra Awasthi, Atmaram Pawar
{"title":"Formulation and Characterization of Nanostructured Lipid Carriers of Rizatriptan Benzoate-Loaded <i>In Situ</i> Nasal Gel for Brain Targeting.","authors":"Dyandevi Mathure,&nbsp;Hemantkumar Ranpise,&nbsp;Rajendra Awasthi,&nbsp;Atmaram Pawar","doi":"10.1089/adt.2022.044","DOIUrl":"https://doi.org/10.1089/adt.2022.044","url":null,"abstract":"<p><p>Intranasal route provides large surface area, avoids first-pass metabolism, and results in improved drug absorption. Intranasal delivery targets the drug to the brain for treatment of central nervous diseases viz migraine. The objective of the study was to formulate in situ nasal gel containing rizatriptan benzoate (RB)-loaded nanostructured lipid carriers (NLCs). NLCs were prepared by melt-emulsification ultrasonication method and optimized using 3<sup>2</sup> factorial design. Optimized NLCs were spherical with particle size of 189 nm, high drug encapsulation efficiency (84.5%), and 83.9% drug release at the end of 24 h. RB-loaded NLCs were incorporated into the liquid Carbopol 934P and Poloxamer 407 liquid gelling system to obtain in situ gel formation. The resultant product was assessed for gelling capacity, viscosity, and mucoadhesive strength. In vivo pharmacokinetic studies revealed significant therapeutic concentration of drug in the brain following intranasal administration with <i>C</i><sub>max</sub> value of 5.1 ng/mL and area under the curve value of 829 ng/(min·mL). Significantly higher values of nose to brain targeting parameters, namely, drug targeting index (2.76) and nose to brain drug direct transport (63.69%) for RB-NLCs in situ nasal gel, confirmed drug targeting to brain through nasal route. The ex vivo nasal toxicity study showed no sign of toxicity to the nasal mucosa. Thus, the application of lipid carrier-loaded in situ gel proved potential for intranasal delivery of RB over the conventional gel formulations for efficient brain targeting.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 5","pages":"211-224"},"PeriodicalIF":1.8,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40572021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信