Abdulsalam A Alqahtani, Hira Aslam, Shazia Shukrullah, Hareem Fatima, Muhammad Yasin Naz, Saifur Rahman, Mater H Mahnashi, Muhammad Irfan
{"title":"Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review.","authors":"Abdulsalam A Alqahtani, Hira Aslam, Shazia Shukrullah, Hareem Fatima, Muhammad Yasin Naz, Saifur Rahman, Mater H Mahnashi, Muhammad Irfan","doi":"10.1089/adt.2022.025","DOIUrl":"https://doi.org/10.1089/adt.2022.025","url":null,"abstract":"<p><p>Combination therapy has become much more effective in treating cancer because it produces combinatorial anticancer results, lowers specific drug-related toxicities, and inhibits multidrug resistivity through several modes of action. Combined drug delivery (CDD) to cancerous tissues, primarily based on nanotechnology, has developed as a viable method in recent years, surpassing various biomedical, biophysical, and biological obstacles that the body erects to prevent antitumor drugs from reaching their target tissues. In a combined strategy, the prolonged, regulated, and targeted administration of chemotherapeutic medicines improves therapeutic anticancer benefits while reducing drug-related adverse effects. CDD systems have several advantages over traditional drug systems, such as improved solubility, higher permeability for traveling through biomembranes, a significantly longer half-life to expand the treatment time, and low cytotoxicity. CDDs are mostly used to treat neurological, cardiovascular, neoplastic, infectious, and inflammatory diseases. Many CDDs are designed to enhance hydrophilicity to improve transportation inside or across biomembranes, particularly the cornea and skin. CDDs could be delivered to particular cells, organs, or tissues, resulting in increased bioavailability. The most widely utilized nanocarriers for CDDs of anticancer medicines are summarized in this review. This study also covers the chemical or enzymatic decomposition of CDDs and their bioactivity and pharmacokinetics. Additional clinical trials will enhance the usefulness of CDDs in treating drug-resistant tumors.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 5","pages":"191-210"},"PeriodicalIF":1.8,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40519121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation and Optimization of Leuprolide Acetate Nanoparticles Using Response Surface Methodology: <i>In Vitro</i> and <i>Ex Vivo</i> Evaluation.","authors":"Tosha Pandya, Abhay Dharamsi","doi":"10.1089/adt.2022.051","DOIUrl":"https://doi.org/10.1089/adt.2022.051","url":null,"abstract":"<p><p>This study aims to develop optimized leuprolide acetate (LA) nanoparticles (NPs) for intranasal delivery in the treatment of Alzheimer's disease. Box-Behnken Design was used to optimize LA polylactide-<i>co</i>-glycolic acid (PLGA) NPs. The independent variables chosen were PLGA concentration, surfactant concentration, and the ratio of water to oil phase, whereas the dependent variables were particle size and % entrapment efficiency. The optimized NPs were evaluated by <i>in vitro</i> drug release study, <i>ex vivo</i> diffusion study, histopathology study, hemolytic stability study, and stability in simulated nasal fluid (SNF). The optimized NPs had particle size of 182.6 ± 1.5 nm, polydispersity index (0.3), % entrapment efficiency (77.3 ± 0.6), and zeta potential (-5.6 mv ±0.2). The <i>in vitro</i> drug release indicated 96% of pure drug release in 6 h, whereas only 66.35% of the drug was released from the optimized formulation at 48 h. The <i>ex vivo</i> diffusion study indicated an apparent permeability coefficient of 5.0 + 0.3 × 10<sup>4</sup> for drug-containing NPs, which was higher than for plain drug solution (2.0 + 0.2 × 10<sup>4</sup>). Sheep nasal toxicity and hemolytic study proved the safety of formulation. The optimized NPs were found to be stable in SNF. Thus, nanoparticulate formulation of LA was optimized by quality by design approach.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 5","pages":"237-249"},"PeriodicalIF":1.8,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40604409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel Therapeutics Involving Antibiotic Polymer Conjugates for Treating Various Ailments: A Review.","authors":"Abhay Tharmatt, Aashveen Chhina, Muskaan Saini, Karan Trehan, Sahilpreet Singh, Neena Bedi","doi":"10.1089/adt.2022.031","DOIUrl":"https://doi.org/10.1089/adt.2022.031","url":null,"abstract":"Antibiotic polymer conjugates (APCs) are an essential part of polymer therapeutics. These conjugates have been used as an appealing platform for drug delivery. As a delivery vector, the administration route severely impacts the accessibility of antibiotics to their respective target site and therapeutic index. Furthermore, the physicochemical and biological properties of conjugates also correlate distinctly with the route of administration. The APCs delivery methods that have been disclosed so far suffer from significant constraints due to poor technology and constrained administration routes (mainly injections). Leading to promising directions, which include the development of specific characteristics for each polymer carrier, application of novel biodegradable polymers, expansion of traditional drug administration routes through the development of emerging routes, and the development of a rational and systematic methodology for designing administration routes are yet to be explored widely. This review focuses primarily on recent improvements in various routes of administration (dental, topical, and ocular) employing APCs. The mechanism of action, as well as other perspectives, have also been discussed. Moreover, this innovative technology provides a fresh perspective on pharmaceutical science research and offers unique and potential pathways for designing desired APCs.","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44813104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formulation and Characterization of Raloxifene Nanostructured Lipid Carriers for Permeability and Uptake Enhancement Applications.","authors":"Anju Sharma, Jarriaun Streets, Priyanka Bhatt, Pranav Patel, V. Sutariya, Sheeba Varghese Gupta","doi":"10.1089/adt.2022.004","DOIUrl":"https://doi.org/10.1089/adt.2022.004","url":null,"abstract":"Raloxifene (RLX), a biopharmaceutical classification system (BCS) class II drug, is a selective estrogen receptor modulator (SERM) having an estrogenic effect on the bone and an antiestrogenic effect on the endometrium and breast. Low solubility, high permeability, high metabolism, and low bioavailability are the characteristics of raloxifene. Although 60% is absorbed orally, raloxifene shows extremely poor bioavailability (2%) owing to its low solubility and extensive (>90%) intestinal/hepatic first-pass metabolism. Hence, it becomes important to increase the solubility of raloxifene to enhance its bioavailability. In this study, raloxifene nanostructured lipid carriers (RNLCs) were prepared using the melt dispersion ultrasonication method. The prepared RNLCs were characterized, and the in vitro studies were carried out in the human epithelial breast cancer cell line (MCF-7). The RNLCs had a size of 114.8 ± 0.98 nm and a zeta potential of +9.21 ± 0.58 mV. Transmission electron microscopy (TEM) images showed particle size ranging from 65 to 120 nm. With an entrapment efficiency of 75.04% ± 2.75%, the RNLCs showed sustained release over 7 days compared with the raloxifene drug solution. The prepared RNLCs were successfully taken up by the MCF-7 cells in a time-dependent manner, and the RNLCs showed increased cell cytotoxicity compared with the raloxifene drug. Using the parallel artificial membrane permeability assay (PAMPA), the permeability rate for raloxifene solution was calculated to be 8 × 10-6 cm/s, and for the RNLCs, it was calculated to be 17.8 × 10-6 cm/s. Hence, from the permeability rate calculated, we could conclude that raloxifene, when formulated as nanostructured lipid carriers, showed increased permeability. Overall, the prepared RNLCs were found to be superior to the raloxifene drug as such.","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46391558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drug Repurposing Patent Applications January-March 2022.","authors":"H. Mucke","doi":"10.1089/adt.2022.033","DOIUrl":"https://doi.org/10.1089/adt.2022.033","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48237267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: A New Spectral Shift-Based Method to Characterize Molecular Interactions, by Langer, et al. Assay Drug Dev Technol. 2022;20(2):83-94; doi: 10.1089/adt.2021.133.","authors":"","doi":"10.1089/adt.2021.133.correx","DOIUrl":"https://doi.org/10.1089/adt.2021.133.correx","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42119587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Call for Special Issue Papers: New Modalities in Chemical Probes and Pharmacological Tools in Drug Discovery.","authors":"M. Kostic, B. Melancon","doi":"10.1089/adt.2022.29098.cfp","DOIUrl":"https://doi.org/10.1089/adt.2022.29098.cfp","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41504913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuping Wang, Min Zhou, Jing Wang, Chu-Fang Lin, Xiang-li Gao, Li Zhang, Wenshui Yao, Longxin Zhang
{"title":"Developmental Cardiotoxicity and Hepatotoxicity of Flurbiprofen Axetil to Zebrafish Embryo.","authors":"Yuping Wang, Min Zhou, Jing Wang, Chu-Fang Lin, Xiang-li Gao, Li Zhang, Wenshui Yao, Longxin Zhang","doi":"10.1089/adt.2021.127","DOIUrl":"https://doi.org/10.1089/adt.2021.127","url":null,"abstract":"Flurbiprofen axetil (FA) is a nonsteroidal targeted analgesic and widely used for postoperative analgesia and cancer analgesia. Extensive works have been done in the evaluation of FA's clinical analgesic effect on adults. Along with the increase of FA usage, the potential toxicity and molecular mechanism in embryo development need to be better understood. In this article, multiple embryonic development indexes of zebrafish were introduced to evaluate the FA toxicity to provide clinical guidance for gravidas medicine. We performed a zebrafish embryo toxicity (ZFET) test by exposing embryos to a series of concentration gradients of FA medium starting from 24 hours postfertilization (hpf). The mortality rate, hatching rate, and malformation rate of drug-treated zebrafish were assessed at 72, 96, and 120 hpf. Effects of ≤10% lethal concentration (LC10) of FA on embryogenesis were evaluated by eye area, body length, and yolk sac area. A 0.5 μg/mL or fewer FA treatment did not show any adverse effects, but the LC10 FA significantly caused zebrafish malformation. Organ disorders, including slow heart rate, enlarged pericardium, and liver atrophy, were found in the dysplasia individuals when compared with control. TUNEL assay suggested that apoptotic cells in malformation embryos were produced by FA and the increasing dosage exacerbated apoptosis. Quantitative real-time polymerase chain reaction revealed that expressions of cardiac development-associated transcription factors, liver development-related genes, and apoptosis regulating genes were aberrant. These results indicate that the ZFET can be applied in the FA toxicity test, and a low lethal dose of FA is harmful to zebrafish embryogenesis, especially in embryo carcinogenesis and hepatogenesis.","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 3 1","pages":"125-135"},"PeriodicalIF":1.8,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42987879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Call for Special Issue Papers: Chemical Probes and Pharmacological Tools for Imaging Applications.","authors":"M. Kostic, B. Melancon","doi":"10.1089/adt.2022.29099.cfp","DOIUrl":"https://doi.org/10.1089/adt.2022.29099.cfp","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45045707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interview with Craig W. Lindsley, PhD.","authors":"B. Melancon","doi":"10.1089/adt.2022.29097.bjm","DOIUrl":"https://doi.org/10.1089/adt.2022.29097.bjm","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42980319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}