Ashveta Anant Dessai, Mrunali Navin Kantak, Cleona Elizabeth Mary DCruz, Lalit Kumar, Prashant Jivaji Bhide, Rupesh Kalidas Shirodkar
{"title":"拉西地平纳米药物载体体系的制备与表征。","authors":"Ashveta Anant Dessai, Mrunali Navin Kantak, Cleona Elizabeth Mary DCruz, Lalit Kumar, Prashant Jivaji Bhide, Rupesh Kalidas Shirodkar","doi":"10.1089/adt.2023.023","DOIUrl":null,"url":null,"abstract":"<p><p><i>Lacidipine, a calcium channel antagonist, is primarily used to treat hypertension. It is classified as a Biopharmaceutics Classification System Class II drug and exhibits an oral bioavailability of 10% due to its extensive hepatic first-pass metabolism. This research study focused on formulating lacidipine-loaded cubosomal nanovesicles developed into rapidly dissolving oral films as an alternative to overcome the downsides faced by conventional antihypertensive therapy. Lacidipine-loaded cubosomes were prepared utilizing a top-down technique using lipid and surfactant and were further developed into fast dissolving oral films. Box-Behnken design was used for the optimization of process variables to achieve minimum particle size and greater entrapment efficiency of the nanovesicles, and response data were statistically evaluated. The optimized cubosomal dispersions upon characterization reported particle size within nanorange (116.8-341 nm) and an entrapment efficiency of 88.15%-97.1%, with 91.72% of total drug content. Morphological studies revealed uniformly dispersed vesicles with cubic to spherical shape. Oral rapidly dissolving films, after evaluation, were reported to have transparent to opaque appearance with a highly porous nature, which was confirmed by scanning electron microscopic imaging and displayed uniformity in weight and thickness and reported optimum mechanical strength and considerable flexibility, with disintegration time of 37.67 ± 3.68 s and exhibited 91.44% ± 1.65%</i> in vitro <i>drug release after 6 min. Short-term stability studies conducted on films at 25°C ± 2°C and 60% ± 5% relative humidity for 3 months demonstrated no significant variation in morphological and mechanical properties. Therefore, lacidipine-loaded cubosomal rapid dissolving oral films may be a promising formulation approach for the management of hypertension.</i></p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation and Characterization of Nanoparticulate Drug Carrier System for Lacidipine.\",\"authors\":\"Ashveta Anant Dessai, Mrunali Navin Kantak, Cleona Elizabeth Mary DCruz, Lalit Kumar, Prashant Jivaji Bhide, Rupesh Kalidas Shirodkar\",\"doi\":\"10.1089/adt.2023.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Lacidipine, a calcium channel antagonist, is primarily used to treat hypertension. It is classified as a Biopharmaceutics Classification System Class II drug and exhibits an oral bioavailability of 10% due to its extensive hepatic first-pass metabolism. This research study focused on formulating lacidipine-loaded cubosomal nanovesicles developed into rapidly dissolving oral films as an alternative to overcome the downsides faced by conventional antihypertensive therapy. Lacidipine-loaded cubosomes were prepared utilizing a top-down technique using lipid and surfactant and were further developed into fast dissolving oral films. Box-Behnken design was used for the optimization of process variables to achieve minimum particle size and greater entrapment efficiency of the nanovesicles, and response data were statistically evaluated. The optimized cubosomal dispersions upon characterization reported particle size within nanorange (116.8-341 nm) and an entrapment efficiency of 88.15%-97.1%, with 91.72% of total drug content. Morphological studies revealed uniformly dispersed vesicles with cubic to spherical shape. Oral rapidly dissolving films, after evaluation, were reported to have transparent to opaque appearance with a highly porous nature, which was confirmed by scanning electron microscopic imaging and displayed uniformity in weight and thickness and reported optimum mechanical strength and considerable flexibility, with disintegration time of 37.67 ± 3.68 s and exhibited 91.44% ± 1.65%</i> in vitro <i>drug release after 6 min. Short-term stability studies conducted on films at 25°C ± 2°C and 60% ± 5% relative humidity for 3 months demonstrated no significant variation in morphological and mechanical properties. Therefore, lacidipine-loaded cubosomal rapid dissolving oral films may be a promising formulation approach for the management of hypertension.</i></p>\",\"PeriodicalId\":8586,\"journal\":{\"name\":\"Assay and drug development technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assay and drug development technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/adt.2023.023\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2023.023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Formulation and Characterization of Nanoparticulate Drug Carrier System for Lacidipine.
Lacidipine, a calcium channel antagonist, is primarily used to treat hypertension. It is classified as a Biopharmaceutics Classification System Class II drug and exhibits an oral bioavailability of 10% due to its extensive hepatic first-pass metabolism. This research study focused on formulating lacidipine-loaded cubosomal nanovesicles developed into rapidly dissolving oral films as an alternative to overcome the downsides faced by conventional antihypertensive therapy. Lacidipine-loaded cubosomes were prepared utilizing a top-down technique using lipid and surfactant and were further developed into fast dissolving oral films. Box-Behnken design was used for the optimization of process variables to achieve minimum particle size and greater entrapment efficiency of the nanovesicles, and response data were statistically evaluated. The optimized cubosomal dispersions upon characterization reported particle size within nanorange (116.8-341 nm) and an entrapment efficiency of 88.15%-97.1%, with 91.72% of total drug content. Morphological studies revealed uniformly dispersed vesicles with cubic to spherical shape. Oral rapidly dissolving films, after evaluation, were reported to have transparent to opaque appearance with a highly porous nature, which was confirmed by scanning electron microscopic imaging and displayed uniformity in weight and thickness and reported optimum mechanical strength and considerable flexibility, with disintegration time of 37.67 ± 3.68 s and exhibited 91.44% ± 1.65% in vitro drug release after 6 min. Short-term stability studies conducted on films at 25°C ± 2°C and 60% ± 5% relative humidity for 3 months demonstrated no significant variation in morphological and mechanical properties. Therefore, lacidipine-loaded cubosomal rapid dissolving oral films may be a promising formulation approach for the management of hypertension.
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts