Assay and drug development technologies最新文献

筛选
英文 中文
A Time of Transition: Looking Back with Gratitude, Forward with Optimism. 过渡时期:感恩回首,乐观前行。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2024-11-12 DOI: 10.1089/adt.2024.123
Bruce J Melancon
{"title":"A Time of Transition: Looking Back with Gratitude, Forward with Optimism.","authors":"Bruce J Melancon","doi":"10.1089/adt.2024.123","DOIUrl":"https://doi.org/10.1089/adt.2024.123","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Pharmaceutical Cocrystal Consisting of Chlorzoxazone and Nicotinamide: A New Promising Carrier for Solubility Augmentation. 由氯唑沙宗和烟酰胺组成的新型药用共晶体:一种用于增加溶解度的新型载体。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2024-11-08 DOI: 10.1089/adt.2024.051
Arzoo Sekhani, Rahul Jha, Pranav J Shah
{"title":"Novel Pharmaceutical Cocrystal Consisting of Chlorzoxazone and Nicotinamide: A New Promising Carrier for Solubility Augmentation.","authors":"Arzoo Sekhani, Rahul Jha, Pranav J Shah","doi":"10.1089/adt.2024.051","DOIUrl":"https://doi.org/10.1089/adt.2024.051","url":null,"abstract":"<p><p>\u0000 <i>Chlorzoxazone (CHZ) is a centrally acting muscle relaxant used to treat muscle spasms. It is employed as a first-line medication for treating muscle spasms, offering both musculoskeletal relaxation and mild sedative effects. According to the biopharmaceutics classification system, it belongs to class II drug having poor solubility and high permeability. In order to improve the flow property, water solubility, and dissolution of CHZ, CHZ-nicotinamide (NA) cocrystal was prepared by liquid-assisted grinding cocrystallization (LAG CC) method using methanol as the choice of solvent. CHZ-NA cocrystal was characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry, and scanning electron microscopy (SEM). DSC scan showed a sharp endothermic peak shift, which is caused by the formation of a new crystal form with altered physical properties, which was further confirmed by PXRD. Also, a change in the surface morphology of LAG CC compared to CHZ was observed in SEM. The resultant CHZ-NA cocrystal displayed improved powder flow properties compared to the native form of CHZ. LAG CC demonstrated a 3.1- and 2.6-fold increase in saturated solubility and intrinsic dissolution rate, respectively, compared to CHZ alone. Furthermore, the <i>in vitro</i> dissolution study showed that the cumulative dissolution of CHZ in 2 h was about 53%. Whereas, dissolution of LAG CC reached 99% in 2 h, showing obvious dissolution improvement. Thus, CHZ-NA cocrystal could significantly improve the flow properties, solubility and dissolution of CHZ.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ligandrol Ameliorates High-Fat Diet- and Streptozotocin-Induced Type 2 Diabetes Mellitus and Prevents Pancreatic Islets Degeneration. 利甘定能改善高脂饮食和链脲佐菌素诱发的 2 型糖尿病并防止胰岛退化
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2024-11-06 DOI: 10.1089/adt.2024.029
Deepa Sugumar, Ritaban Ghosh, Emdormi Rymbai, Jaikanth Chandrasekaran, Praveen Thaggikuppe Krishnamurthy, Ranjith S P, Shreya Sahu, Divakar Selvaraj
{"title":"Ligandrol Ameliorates High-Fat Diet- and Streptozotocin-Induced Type 2 Diabetes Mellitus and Prevents Pancreatic Islets Degeneration.","authors":"Deepa Sugumar, Ritaban Ghosh, Emdormi Rymbai, Jaikanth Chandrasekaran, Praveen Thaggikuppe Krishnamurthy, Ranjith S P, Shreya Sahu, Divakar Selvaraj","doi":"10.1089/adt.2024.029","DOIUrl":"https://doi.org/10.1089/adt.2024.029","url":null,"abstract":"<p><p>Androgen therapy has been shown to alleviate type 2 diabetes mellitus (T2DM) but is also associated with severe side effects such as prostate cancer. The present study aims to identify the best hit selective androgen <i>receptor</i> (AR) modulator by <i>in silico</i> studies and then investigates its antidiabetic effects in high-fat diet- and streptozotocin (STZ)-induced T2DM male rat model. Molecular docking and molecular dynamics (MD) studies were carried out using Maestro 13.1 and Desmond (2023-2024). Cytotoxicity and insulin secretion were measured in MIN6 cell lines. T2DM was induced using high-fat diet (HFD) for 4 weeks, followed by single STZ (40 mg/kg, intraperitoneally). OneTouch Ultra glucometer was used to measure fasting blood glucose. Gene expression was determined using reverse transcription polymerase chain reaction. Histopathology was carried out using hematoxylin and eosin stain. Through molecular docking, we identify ligandrol as a potential hit. Ligandrol showed a good binding affinity (-10.74 kcal/mol). MD showed that ligandrol is stable during the 100 ns simulation. Ligandrol increases insulin secretion in a dose-dependent manner <i>in vitro</i> in 2 h. Ligandrol (0.3 and 1 mg/kg, orally) significantly decreased the body weight and fasting blood glucose levels compared with the HFD and STZ group. Gene expression showed that ligandrol significantly increased the AR-targeted gene, <i>neurogenic differentiation 1</i>, compared with the HFD and STZ group. Histopathological staining studies showed that ligandrol prevents pancreatic islet degeneration compared with the HFD and STZ group. Our findings suggest that ligandrol's protective effect on pancreatic islets leading to its antidiabetic effect occurs through the activation of AR.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking Antioxidant-Anticancer Synergy: An Exploration of Therapeutic Bioactives from Methanolic Extracts of Rubus ellipticus and Boerhavia diffusa Using HeLa Cell Line. 揭示抗氧化剂与抗癌剂的协同作用:利用 HeLa 细胞系探索椭圆茜草和白苧麻甲醇提取物中的治疗生物活性物质
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2024-10-01 Epub Date: 2024-07-31 DOI: 10.1089/adt.2024.040
Vipresh Bhardwaj, G T Kulkarni, Kalpana Nagpal
{"title":"Unlocking Antioxidant-Anticancer Synergy: An Exploration of Therapeutic Bioactives from Methanolic Extracts of <i>Rubus ellipticus</i> and <i>Boerhavia diffusa</i> Using HeLa Cell Line.","authors":"Vipresh Bhardwaj, G T Kulkarni, Kalpana Nagpal","doi":"10.1089/adt.2024.040","DOIUrl":"10.1089/adt.2024.040","url":null,"abstract":"<p><p>\u0000 <i>This study aimed to assess the synergistic antioxidant and anticancer effects of methanolic extracts derived from <i>Rubus ellipticus</i> and <i>Boerhavia diffusa</i> fruits against the HeLa cell line. The methanolic extracts were prepared from the fruits of <i>R. ellipticus</i> and <i>B. diffusa</i>, and their antioxidant potential was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity assay and the ferric reducing antioxidant power (FRAP) assay. The anticancer effects of benzoic acid and rutin extracted from the aforementioned fruits were also investigated against the HeLa cell line using the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay to measure the cell metabolic activity. Using Synergy Finder plus software, the bioactive compounds were tested to explore any synergistic effects. <i>R. ellipticus</i> exhibited higher antioxidant potential as revealed by higher DPPH scavenging activity and FRAP value compared with <i>B. diffusa</i>. The benzoic acid extracted from <i>R. ellipticus</i> demonstrated potent anticancer activity against the HeLa cell line, with an IC<sub>50</sub> of 1.07 µg/mL. Similarly, rutin extracted from <i>B. diffusa</i> displayed moderate anticancer activity with an IC<sub>50</sub> of 1.4 µg/mL while exhibiting minimal impact on normal cell lines. The combination studies of the extracted bioactive compounds revealed a synergistic effect. These findings suggest the therapeutic potential of <i>R. ellipticus</i> and <i>B. diffusa</i> in combating the oxidative stress and cancer. Their bioactive compounds like benzoic acid and rutin were observed to act synergistically. Further investigations are warranted to elucidate the underlying mechanisms and evaluate their applicability in clinical settings.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"361-372"},"PeriodicalIF":1.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141858935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug Repurposing Patent Applications: April-June 2024. 药物再利用专利申请:2024 年 4 月至 6 月。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2024-10-01 Epub Date: 2024-09-24 DOI: 10.1089/adt.2024.081
Hermann A M Mucke
{"title":"Drug Repurposing Patent Applications: April-June 2024.","authors":"Hermann A M Mucke","doi":"10.1089/adt.2024.081","DOIUrl":"10.1089/adt.2024.081","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"387-394"},"PeriodicalIF":1.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latest Delivery Advancements of Lipid Nanoparticles for Cancer Treatment. 脂质纳米粒子用于癌症治疗的最新进展。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2024-08-01 Epub Date: 2024-07-05 DOI: 10.1089/adt.2024.019
Somia Chauhan, Kalpana Nagpal
{"title":"Latest Delivery Advancements of Lipid Nanoparticles for Cancer Treatment.","authors":"Somia Chauhan, Kalpana Nagpal","doi":"10.1089/adt.2024.019","DOIUrl":"10.1089/adt.2024.019","url":null,"abstract":"<p><p>\u0000 <i>As one of the primary causes of illness and death globally, cancer demands novel and potent treatment approaches, which is why lipid nanoparticles (LNPs) have gained attention as a promising delivery system for anticancer drugs with precision and efficacy. The article discusses the salient characteristics of LNPs, such as the lipid components, particle size, polydispersity index, and encapsulation efficiency, followed by strategies that enhance their remarkable drug delivery capabilities. The articles explore LNPs ability to improve the solubility, stability, and bioavailability of various chemotherapeutics, nucleic acids, and immunotherapeutic modalities. It also highlights the recent advancement in surface modification of LNPs, which is essential to improve their effectiveness. Tailored coatings of LNPs improve targeting precision, stability, and biocompatibility; enhancing their transport to boost therapeutic efficacy for cancer targeting. The review summarizes the recent advancements made in using LNPs to treat different forms of cancer and focuses on the most recent clinical studies. Overall, the review highlights that the LNPs can target and treat cancer in a tailored manner through gene therapy, RNA interference, and immunotherapy.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"340-360"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel In Situ Gelling System of Quercetin/Sulfobutyl-Ether-β-Cyclodextrin Complex-Loaded Chitosan Nanoparticles for the Treatment of Vulvovaginitis. 用于治疗外阴阴道炎的槲皮素/磺丁基醚-β-环糊精复合物壳聚糖纳米粒子的新型原位胶凝系统
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2024-08-01 Epub Date: 2024-07-19 DOI: 10.1089/adt.2024.042
Amala Maxwell, Prachi Modi, Karishma Sequeira, Masuma Punja, Shaila Lewis
{"title":"A Novel <i>In Situ</i> Gelling System of Quercetin/Sulfobutyl-Ether-β-Cyclodextrin Complex-Loaded Chitosan Nanoparticles for the Treatment of Vulvovaginitis.","authors":"Amala Maxwell, Prachi Modi, Karishma Sequeira, Masuma Punja, Shaila Lewis","doi":"10.1089/adt.2024.042","DOIUrl":"10.1089/adt.2024.042","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"308-324"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, Antimicrobial Evaluation, and In Silico Studies of 2-Substituted-Phenyl-3-(5-Aryl/Heteroaryl Substituted Thiazol-2-yl) Thiazolidin-4-One Derivatives. 2-取代苯基-3-(5-芳基/杂芳基取代噻唑-2-基)噻唑烷-4-酮衍生物的合成、抗菌评估和硅学研究。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2024-08-01 Epub Date: 2024-07-24 DOI: 10.1089/adt.2024.027
Swati Pawar, Ram Karan, Srija Hazarika, Mohan Lal, Ravindra K Rawal, Praveen Kumar Gupta
{"title":"Synthesis, Antimicrobial Evaluation, and <i>In Silico</i> Studies of 2-Substituted-Phenyl-3-(5-Aryl/Heteroaryl Substituted Thiazol-2-yl) Thiazolidin-4-One Derivatives.","authors":"Swati Pawar, Ram Karan, Srija Hazarika, Mohan Lal, Ravindra K Rawal, Praveen Kumar Gupta","doi":"10.1089/adt.2024.027","DOIUrl":"10.1089/adt.2024.027","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"325-339"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Novel Acrylamide Graft Copolymer of Acacia nilotica Gum for the Stabilization of Melatonin Nanoparticles for Improved Therapeutic Effect: Optimization Using (3)2 Factorial Design. 合成新型刺槐胶丙烯酰胺接枝共聚物,用于稳定褪黑素纳米颗粒以提高治疗效果:使用 (3)2 因式设计进行优化。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2024-08-01 Epub Date: 2024-07-04 DOI: 10.1089/adt.2024.013
Sonali Sundram, Neerupma Dhiman, Rishabha Malviya, Rajendra Awasthi
{"title":"Synthesis of Novel Acrylamide Graft Copolymer of <i>Acacia nilotica</i> Gum for the Stabilization of Melatonin Nanoparticles for Improved Therapeutic Effect: Optimization Using (3)<sup>2</sup> Factorial Design.","authors":"Sonali Sundram, Neerupma Dhiman, Rishabha Malviya, Rajendra Awasthi","doi":"10.1089/adt.2024.013","DOIUrl":"10.1089/adt.2024.013","url":null,"abstract":"<p><p>\u0000 <i>The objective of the present study was to optimize the microwave-assisted synthesis of the acrylamide graft copolymer of <i>Acacia nilotica</i> gum (AM-co-ANG). Furthermore, graft copolymer was used for the formulation of a nanoparticulate system using a novel top to bottom solvent antisolvent technique for the delivery of melatonin. Grafting of ANG was optimized by using 3<sup>2</sup> factorial design, where concentrations of polymer and monomer (acrylamide) were used as independent variables and swelling index in acidic (0.1 N HCl) and basic (1 N NaOH) pH. Grafted polymers were further used to develop and optimize nanoparticulate system using concentration of the graft copolymer and concentration of drug as independent variables. The size of the nanoformulation and entrapment efficiency were selected as dependent variables. Difference in infrared spectrum and absorbance maxima in the ultraviolet region confirm that grafting has taken place. Porous structure and a higher contact angle confirmed hydrophobic nature of AM-co-ANG as compared with the native polymer. Acrylamide graft copolymers show more swelling in 1 N NaOH as compared with 0.1 N HCl. <i>In vitro</i> toxicity studies in hepatic (HepG2 cell line), brain (SHSY5Y cell line), and skin (HaCaT cell line) cells easily predict that synthesized polymer have no cytotoxicity. The entrapment efficiency ranged from 55.24 ± 1.35% to 73.21 ± 1.83%. A nonlinear correlation was observed between independent and dependent variables, as confirmed by multivariate analysis of variance, surface regression, and the correlation report. The prepared formulations were able to release drug up to 12 h. The regression coefficient easily predicted that most of the formulations followed Baker-Lonsdale drug release kinetics.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"278-307"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MiR-22-3p Inhibits 5-Fluorouracil Resistance in Cholangiocarcinoma Cells Through PTEN/PI3K/AKT Axis. MiR-22-3p 通过 PTEN/PI3K/AKT 轴抑制胆管癌细胞的 5-氟尿嘧啶抗性
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2024-07-01 Epub Date: 2024-07-05 DOI: 10.1089/adt.2024.007
Ningrong Zhang, Li Zang
{"title":"MiR-22-3p Inhibits 5-Fluorouracil Resistance in Cholangiocarcinoma Cells Through PTEN/PI3K/AKT Axis.","authors":"Ningrong Zhang, Li Zang","doi":"10.1089/adt.2024.007","DOIUrl":"10.1089/adt.2024.007","url":null,"abstract":"<p><p>\u0000 <i>Cholangiocarcinoma (CCA) is a prevalent and highly lethal form of cancer globally. Although microRNAs (miRNAs) have been implicated in the advancement of CCA, their potential influence on 5-fluorouracil (5-Fu) resistance in CCA remains to be fully elucidated. Here, in this study, we investigated the impact of miR-22-3p on CCA resistance. Our investigation involved bioinformatics analysis, which revealed an association between miR-22-3p and the progression, diagnosis, and patient survival of CCA. Furthermore, we validated a notable downregulation of miR-22-3p expression in CCA cell lines. Elevated levels of miR-22-3p inhibit the activity and proliferation of 5-Fu-resistant CCA cell lines. In addition, we confirmed that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a target gene of miR-22-3p, and its expression correlates with the survival of CCA patients. Reduced PTEN expression enhances apoptosis in 5-Fu-resistant CCA cells. Meanwhile, we verified the existence of the miR-22-3p/PTEN/phosphatidylinositol-3 kinase (PI3K)/Protein kinase B (AKT) regulatory networks in CCA, influencing the sensitivity of CCA cells to 5-Fu. In conclusion, our findings suggest that miR-22-3p acts as a tumor suppressor. Its overexpression inhibits the PTEN/PI3K/AKT axis, promoting cell apoptosis and enhancing CCA sensitivity to 5-Fu.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"217-228"},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信