{"title":"Recent Trends in Drug Delivery Systems.","authors":"Omnia Mohamed Sarhan","doi":"10.1089/adt.2025.031","DOIUrl":"https://doi.org/10.1089/adt.2025.031","url":null,"abstract":"<p><p>\u0000 <i>Drug delivery systems are now being advanced by integrating sophisticated nanotechnologies to enhance therapeutic efficacy. Tremendous advancement has been achieved in the field of cancer therapy through the utilization of hyaluronic acid-based nanocarriers, which are well-acknowledged for their capacity to transport medication precisely to targeted regions. Quantum dots exhibit unique optical properties that allow for precise drug administration and monitoring capabilities. Carbon nanotubes provide a large surface area and exceptional strength, allowing for precise manipulation of drug delivery patterns. Dendrimers are versatile structures that can transport many drugs simultaneously, whereas mesoporous silica-functionalized nanoparticles allow exact manipulation of the release rate of pharmaceuticals. Polymer-lipid hybrid nanoparticles synergistically integrate the durability of polymers with the compatibility of lipids, hence augmenting the availability of drugs within the body. Hexagonal boron nitride nanosheets are becoming more recognized as favorable carriers due to their biocompatibility and potential for tailored administration. These achievements demonstrate the changes happening in the field of pharmaceutical administration, where nanotechnology is used to tackle issues such as restricted bioavailability and unanticipated adverse effects. This ultimately enhances the effectiveness of medicines and improves patient outcomes. Future investigations will focus on improving these technologies for broader therapeutic applications.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143975336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elucidating Genetic and Immunological Pathways Mediated by Sodium-Glucose Transporter 2 Inhibitors in Reducing Gout Risk: A Two-Step Mendelian Randomization Study.","authors":"Huiqiong Zeng, Zebo Cai, Junda Lai, Zhijun Chen, Wei Liu, Ye Zhang","doi":"10.1089/adt.2024.137","DOIUrl":"https://doi.org/10.1089/adt.2024.137","url":null,"abstract":"<p><p>\u0000 <i>While sodium-glucose transporter 2 inhibitors (SGLT2i) demonstrate urate-lowering effects, their causal role in Gout prevention remains controversial. This study employs advanced Mendelian randomization (MR) techniques to dissect immune-mediated mechanisms underlying this relationship. Using bidirectional two-sample MR and mediation analysis, we analyzed genetic instrument variables for SGLT2i (10 single-nucleotide polymorphisms, F-statistic >20), Gout risk (6,810 cases/477,788 controls), and 731 immune cell phenotypes. Pleiotropy and heterogeneity were also assessed to ensure robustness. The study confirmed a significant indirect effect of SGLT2i, which exhibited a 2.6% reduced Gout risk (Odds Ratio [OR]: 0.9738, 95% confidence interval [CI] = 0.9623, 0.9854, P = 1.12e-05). Thirty-five immune cell phenotypes were identified as significantly affecting Gout development, with key phenotypes such as CD86 on myeloid Dendritic cell (DC) (OR: 0.9966; 95% CI = 0.9930, 0.9995), contributing to 12.8% of the overall mediation effect. No evidence of heterogeneity or pleiotropy was detected and reverse-direction MR corroborated these findings. Our study first established SGLT2i as Gout-protective agents through DC-mediated immunomodulation, offering mechanistic insights for targeted prevention strategies in clinical practice.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143957934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sachin Joshi, Priya Jindal, Shreastha Gautam, Charanjeet Singh, Preeti Patel, Ghanshyam Das Gupta, Balak Das Kurmi
{"title":"Mini Review on the Lyophilization: A Basic Requirement for Formulation Development and Stability Modifier.","authors":"Sachin Joshi, Priya Jindal, Shreastha Gautam, Charanjeet Singh, Preeti Patel, Ghanshyam Das Gupta, Balak Das Kurmi","doi":"10.1089/adt.2024.122","DOIUrl":"10.1089/adt.2024.122","url":null,"abstract":"<p><p>\u0000 <i>Freeze-drying is popular for producing pharmaceutical formulations with structurally complicated active components and drug delivery system carriers. It is the process of eliminating water from ice crystals through the sublimation mechanism. Some formulations may require drug-specific excipients such as stabilizers, buffers, and bulking agents to maintain the appearance and assure the long-term stability of the drug product. This approach is utilized for therapeutic compounds that are moisture sensitive, thermolabile, and degrade in the atmosphere. Freezing and primary and secondary drying are critical processes in the lyophilization process because they directly impact the end result. This approach is effective for producing a variety of dosage forms, including oral, inhalation, and parenteral. As a result, lyophilization may be an important method for improving the therapeutic efficacy and delivery of various dosage forms delivered via different routes. Additionally, lyophilization is used in pharmacological research to preserve biological samples, stabilize reference/standards, and increase the solubility and bioavailability of poorly soluble drugs. Thus, lyophilization is critical for maintaining the stability, efficacy, and safety of pharmaceutical products throughout their development and lifecycles. This article includes a broad overview of the lyophilization process, principle, excipients for lyophilized medicine compositions, and new lyophilization technologies as well as their applications in a variety of fields.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"180-194"},"PeriodicalIF":1.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel Atampugbire, Eureka Emefa Ahadjie Adomako, Osbourne Quaye
{"title":"<i>In Vitro</i> Antiviral Assays: A Review of Laboratory Methods.","authors":"Gabriel Atampugbire, Eureka Emefa Ahadjie Adomako, Osbourne Quaye","doi":"10.1089/adt.2024.075","DOIUrl":"10.1089/adt.2024.075","url":null,"abstract":"<p><p>\u0000 <i>Viral diseases remain a significant challenge for global health with rising fatalities each year. In vitro assays are crucial techniques that have been utilized by researchers in the quest to develop antiviral therapies. These assays mimic the internal conditions of a living system and make it possible to study how antiviral compounds interact with such systems in a laboratory setting. Thus, the importance of in vitro assays cannot be overemphasized, as they provide an accurate means for assessing the efficacy of potential antiviral compounds. This review offers an overview of in vitro antiviral assays, the different types of cell lines used, and emerging techniques and applications that have been developed in recent times. The current review also assesses challenges that are encountered in antiviral drug research, as well as emerging technologies like microfluidics and three-dimensional cell cultures. The integration of computational models and multiparametric assays into antiviral research was noted to significantly improve antiviral drug development process.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"165-179"},"PeriodicalIF":1.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yujiao Hou, Yuesheng Zhao, Jun Liu, Yanan Bao, Njolibimi Mosesmanaanye, Chunjie Zhao, Wenjing Li, Bo Hong
{"title":"Optimization of Docetaxel-Zedoary Turmeric Oil Magnetic Solid Lipid Nanoparticle Preparation by Central Composite Design-Response Surface Methodology.","authors":"Yujiao Hou, Yuesheng Zhao, Jun Liu, Yanan Bao, Njolibimi Mosesmanaanye, Chunjie Zhao, Wenjing Li, Bo Hong","doi":"10.1089/adt.2024.120","DOIUrl":"10.1089/adt.2024.120","url":null,"abstract":"<p><p><i>To optimize the formulation of docetaxel-zedoary oil magnetic solid lipid nanoparticles (DTX-ZTO-MSLN) using central composite design-response surface methodology. First, the formulation and preparation process of DTX-ZTO-MSLN were optimized</i> via <i>design-response surface methodology. The appearance, particle size, thermogravimetric, pH, iron content, magnetic strength, and</i> in vitro <i>drug release of DTX-ZTO-MSLN were subsequently examined. Finally, the antitumor effect of DTX-ZTO-MSLN on MCF-7 breast cancer cells was measured</i> via <i>the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. The optimized formulation was as follows: the mass ratio of soybean phospholipid to poloxamer 188 was 0.34, the mass ratio of DTX-ZTO to glycerol monostearate was 3.23, and 29.42 mL of water was used. The DTX-ZTO-MSLN prepared by the optimized method was clear and transparent, with good stability, with an iron content of 7.38%, and a saturation magnetization intensity of 7.05 A·m<sup>2</sup>·kg<sup>-1</sup>. The</i> in vitro <i>drug release was consistent with the Weibull model (R<sup>2</sup> = 0.9992). Compared with zedoary turmeric oil and docetaxel, DTX-ZTO-MSLN had a much greater inhibitory effect on MCF-7 cells (p < 0.05).</i> <i>The optimized DTX-ZTO-MSLN meets the quality requirements for nanoemulsions. This study provides a theoretical basis for developing and applying DTX-ZTO-MSLN</i>.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"195-211"},"PeriodicalIF":1.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Letter:</i> New Horizons in Biomarker Discovery: Assay Technologies for Personalized Drug Development.","authors":"Dilpreet Singh","doi":"10.1089/adt.2025.015","DOIUrl":"10.1089/adt.2025.015","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"212-215"},"PeriodicalIF":1.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ameeduzzafar Zafar, Omar Awad Alsaidan, Md Ali Mujtaba, Saheen Sultana
{"title":"Development of Luteolin-Loaded Calcium Alginate and Gum Tragacanth Blend Microbeads for Oral Delivery: <i>In Vitro</i> Characterization, Antioxidant, Antimicrobial, and Anticancer Activity Against Colon Cancer Cell Line (HT-29).","authors":"Ameeduzzafar Zafar, Omar Awad Alsaidan, Md Ali Mujtaba, Saheen Sultana","doi":"10.1089/adt.2024.142","DOIUrl":"https://doi.org/10.1089/adt.2024.142","url":null,"abstract":"<p><p>\u0000 <i>The utilization of herbal bioactive compounds for health maintenance is now increasing the interest of consumers because it has therapeutic benefits. Luteolin (LLN) is a natural bioactive compound and is found in various plant sources. It has many pharmacological activities, <i>i.e.</i>, anticancer, antidiabetic, antioxidant, anti-inflammatory, and antimicrobial. It has poor water solubility, leading to low dissolution, low bioavailability, and low therapeutic efficacy. The present research work was to develop the LLN-loaded gel microbeads using a combination of sodium alginate (SA) and gum tragacanth polymers to strengthen microbeads (BD) and enhance the therapeutic efficacy. The microbeads were prepared by using the ionotropic gelation method and evaluated by various physicochemical parameters, <i>i.e.</i>, particle size, encapsulation efficiency, swelling index, FITR, and X-ray diffraction study. The optimized microbeads (LLNBD3) showed a 97.63 ± 3.12% yield, 845 ± 6.21 μm in size, and 78.54 ± 3.65% drug entrapment efficiency. The microbeads exhibited excellent swelling in intestinal pH (6.8) compared with an acidic medium (pH 1.2). The LLNBD3 exhibited a sustained release profile (89.23 ± 2.51% in 12 h) with first-order release kinetics (R<sup>2</sup> = 0.9752) with the Fickian diffusion mechanism of drug release. The Fourier transform infrared spectra and X-ray diffractograms did not show any distinct peaks of LLN, revealing that the LLN was encapsulated into a microbeads matrix. The LLNBD3 showed significant antioxidant activity compared with pure LLN, confirmed by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method. In addition, it also showed remarkable in vitro anticancer activity against the colorectal cell line (HT-29) and antimicrobial activity against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>. The stability study demonstrated no significant change in swelling and release behavior. The finding concluded that tragacanth gum and SA microbeads could be promising drug carriers to improve the dissolution and oral delivery of herbal bioactive compounds and synthetic drugs.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dinesh Kumar, Debayan Sil, Balak Das Kurmi, Manish Kumar
{"title":"Future Prospects and Regulatory Pathways for Invasome Technologies in Transdermal Drug Delivery.","authors":"Dinesh Kumar, Debayan Sil, Balak Das Kurmi, Manish Kumar","doi":"10.1089/adt.2024.080","DOIUrl":"10.1089/adt.2024.080","url":null,"abstract":"<p><p>\u0000 <i>Skin is one of the largest organs in the human body. It acts as an outer protective cover and comprises the epidermis, dermis, and hypodermis. Liposomes are formed by phospholipids and have a vesicular character that improves the encapsulation of lipophilic, hydrophilic, and amphiphilic drugs. The invasome structure is flexible as opposed to regular liposomes; this is due to the presence of ethanol and terpene that increases lipid fluidity in the vesicle structure. Terpenes, ethanol, or terpene mixes are potential carriers that invasomes' tiny liposomal vesicles used to improve skin penetration. Terpenes that are primarily derived from natural sources are the most efficient and secure kind of penetration enhancers (PEs). There are some methods for the preparation of invasomes, but mostly the techniques used for the preparation of invasomes are mechanical dispersion and film hydration methods. Although PEs are effective when applied topically, only a small number are clinically approved due to concerns about skin irritation and toxicity. Invasomes exhibit a higher rate of skin penetration than liposomes and ethosomes. This review examines the structure, components, preparation methods, and applications of invasomes in pharmaceutical formulations, focusing on their potential to treat skin disorders and improve therapeutic outcomes. The primary objective is to assess the future potential of invasome technologies in transdermal drug delivery, alongside an exploration of the regulatory challenges and pathways for their development and approval. Graphical abstract illustrating the composition, mechanism of action, and therapeutic applications of invasomes in transdermal drug delivery systems.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"115-135"},"PeriodicalIF":1.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protective Effects of <i>Schizochytrium</i> Microalgal Fatty Acids on Alcoholic Liver Disease: A Network Pharmacology and <i>In Vivo</i> Study.","authors":"Cailin Luo, Li Tian, Yangmin Wen, Zhihua Zheng","doi":"10.1089/adt.2024.106","DOIUrl":"10.1089/adt.2024.106","url":null,"abstract":"<p><p>\u0000 <i>This study aimed to elucidate the hepatoprotective mechanisms of microalgal fatty acids (MFA) from <i>Schizochytrium</i> against alcoholic liver disease (ALD) through network pharmacology and <i>in vivo</i> analysis. Network pharmacology and molecular docking methodologies were employed to predict the potential mechanisms of MFA against ALD. To substantiate these predictions, an acute alcoholic liver injury mouse model was utilized to assess the impact of MFA on serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), total protein (TP), and albumin (ALB). Additionally, liver histopathology and the expression levels of phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) protein were evaluated. Seven active ingredients and 53 potential targets (including 7 core targets) for ALD treatment were identified in MFA. Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that these seven core targets are implicated in various biological pathways, notably those associated with cancer, viral infections, and the PI3K/AKT signaling pathway. Furthermore, molecular docking studies demonstrated that docosahexaenoic acid and docosapentaenoic acid in MFA exhibited strong binding affinity for these seven crucial targets. Animal experiments demonstrated that administration of MFA significantly decreased the levels of AST, ALT, and ALP, while increasing the levels of ALB and TP in mice with acute alcoholic liver injury. Moreover, MFA ameliorated liver tissue pathology and markedly down-regulated the expression of PI3K and AKT proteins in the liver. These results suggest that MFA may possess therapeutic potential for ALD by targeting multiple pathways, with its mechanisms likely involving the inhibition of the PI3K/AKT signaling pathway.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"151-163"},"PeriodicalIF":1.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Glycerosomes: Versatile Carriers for Multi-Route Drug Delivery Systems.","authors":"Kunal Banode, Omkar Patharkar, Vaishnavi Jadhav, Neha Mundhe, Uddhav Mhatre, Madhur Kulkarni","doi":"10.1089/adt.2024.098","DOIUrl":"10.1089/adt.2024.098","url":null,"abstract":"<p><p>\u0000 <i>Glycerosomes signify a groundbreaking advancement in drug delivery technology. Comprising glycerol, phospholipids, and water, glycerosomes offer superior drug stability, penetration, entrapment efficiency, fluidity, and viscosity compared with conventional liposomes. Their formation process eliminates the need for specific transition temperatures, streamlining production. Glycerol's plasticizing properties enhance vesicle elasticity and flexibility, enabling enhanced skin penetration. These vesicles demonstrate immense promise across a range of drug delivery pathways. In dermal and transdermal applications, glycerosomes augment drug permeation by moisturizing the stratum corneum and improving membrane fluidity. For oral delivery, they shield drugs from the harsh gastrointestinal environment and boost intestinal absorption. Pulmonary delivery benefits from glycerosomes' capacity to stabilize and disperse aerosolized vesicles, facilitating deep penetration into lung tissues. Ophthalmic applications profit from increased corneal penetration and extended retention. Intranasal use of glycerosomes enhances mucosal penetration and enables direct drug delivery to the central nervous system by circumventing the blood-brain barrier. Ongoing advancements in glycerosome technology concentrate on integrating diverse functional ingredients like essential oils, β-sitosterol, sodium hyaluronate, and trimethyl chitosan to develop specialized formulations. These variants include STO-glycerosomes, S-glycerosomes, PO-S-glycerosomes, HY-glycerosomes, TMC-glycerosomes, glycethosomes, and glycerospanlastics, all offering enhanced stability, permeability, and therapeutic efficacy. This review delves into the mechanisms of drug transport within glycerosomes, their applications in various delivery routes, and the latest technological developments, highlighting their substantial potential as versatile carriers in contemporary drug delivery systems.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"136-150"},"PeriodicalIF":1.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}