Assay and drug development technologies最新文献

筛选
英文 中文
Beyond the Maze: Recent Advancements in Molecular and Cellular Tethered Drug Delivery Systems. 超越迷宫:分子和细胞系留给药系统的最新进展。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2024-05-01 Epub Date: 2024-05-08 DOI: 10.1089/adt.2024.025
Dilpreet Singh
{"title":"Beyond the Maze: Recent Advancements in Molecular and Cellular Tethered Drug Delivery Systems.","authors":"Dilpreet Singh","doi":"10.1089/adt.2024.025","DOIUrl":"10.1089/adt.2024.025","url":null,"abstract":"<p><p>\u0000 <i>The relentless pursuit of precision medicine has catalyzed the development of molecular and cellular tethered drug delivery systems, a burgeoning field that stands to redefine the paradigms of therapeutic delivery. This review encapsulates the cutting-edge advancements within this domain, emphasizing the engineering of molecular tethers and cellular vectors designed to ferry therapeutics directly to their target sites with unparalleled specificity and efficiency. By exploiting the unique biochemical signatures of disease states, these systems promise a substantial reduction in off-target effects and an enhancement in drug bioavailability, thereby mitigating the systemic side effects that are often associated with conventional drug therapies. Through a synthesis of recent research findings, this review highlights the innovative approaches being explored in the design and application of these tethered systems, ranging from nanotechnology-based solutions to genetically engineered cellular carriers. The potential of these systems to provide targeted therapy for a wide array of diseases, including cancer, autoimmune disorders, and neurological conditions, is thoroughly examined. This abstract aims to provide a succinct overview of the current state and future prospects of molecular and cellular tethered drug delivery systems in advancing the frontiers of precision medicine.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140875718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antidiabetic Evaluation of Kigelia pinnata Root Bark Extract in Streptozotocin-Induced Type-2 Diabetes Model of Rats. 松萝根皮提取物在链脲佐菌素诱导的 2 型糖尿病模型大鼠中的抗糖尿病评价
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-05-01 Epub Date: 2024-03-28 DOI: 10.1089/adt.2023.104
Ravindra Kumar, Neeraj Kumar, Satyendra Kumar Rajput, Sudhanshu Mallan, Arun Kumar, Balwant Singh Rawat, Naresh Kumar Rangra, Shamsher Singh
{"title":"Antidiabetic Evaluation of <i>Kigelia pinnata</i> Root Bark Extract in Streptozotocin-Induced Type-2 Diabetes Model of Rats.","authors":"Ravindra Kumar, Neeraj Kumar, Satyendra Kumar Rajput, Sudhanshu Mallan, Arun Kumar, Balwant Singh Rawat, Naresh Kumar Rangra, Shamsher Singh","doi":"10.1089/adt.2023.104","DOIUrl":"10.1089/adt.2023.104","url":null,"abstract":"<p><p><i>Diabetes mellitus (DM) is the most common endocrine disorder characterized by increased blood glucose levels resulting from defective insulin secretion, resistance to insulin action, or both. DM is often associated with severe complications, and there is an increasing appreciation that cognitive function declines in DM. The aim of this research work was to evaluate</i> Kigelia pinnata <i>root bark extract in Streptozotocin (STZ)-induced type-2 diabetes. Experimental diabetes was induced by a single administration of STZ (60 mg/kg, intraperitoneal [i.p.]), immediately after the STZ administration, and all animals were fed with normal food and water. Nicotinamide was administered (120 mg/kg, i.p.) 15 min before STZ. The development of hyperglycemia was confirmed by the elevated blood glucose levels determined at fixed intervals, which was confirmed by measuring fasting blood glucose levels in rats' blood taken from the tail vein. Supplementation with ethanolic extract of</i> K. pinnata <i>root bark (EEKP) significantly reduced the elevated blood glucose in STZ-induced hyperglycemia in rats. EEKP significantly restored the biochemical and antioxidant defense system. On the final day of the protocol, the extract also reduced inflammatory cytokines in the blood serum.</i></p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140304553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microsponges: Development, Characterization, and Key Physicochemical Properties. 微海绵:微海绵:开发、表征和关键理化特性
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-04-25 DOI: 10.1089/adt.2023.052
Sundus Qureshi, Seyed Ebrahim Alavi, Yousuf Mohammed
{"title":"Microsponges: Development, Characterization, and Key Physicochemical Properties.","authors":"Sundus Qureshi, Seyed Ebrahim Alavi, Yousuf Mohammed","doi":"10.1089/adt.2023.052","DOIUrl":"https://doi.org/10.1089/adt.2023.052","url":null,"abstract":"Microsponges are promising drug delivery carriers with versatile characteristics and controlled release properties for the delivery of a wide range of drugs. The microsponges will provide an optimized therapeutic effect, when delivered at the site of action without rupturing, then releasing the cargo at the predetermined time and area. The ability of the microsponges to effectively deliver the drug in a controlled manner depends on the material composition. This comprehensive review entails knowledge on the design parameters of an optimized microsponge drug delivery system and the controlled release properties of microsponges that reduces the side effects of drugs. Furthermore, the review delves into the fabrication techniques of microsponges, the mechanism of drug release from the microsponges, and the regulatory requirements of the U.S. Food and Drug Administration (FDA) for the successful marketing of microsponge formulation. The review also examines the patented formulations of microsponges. The prospects of these sophisticated drug delivery systems for improved clinical outcomes are highlighted.","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140658032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Throughput DNA-Encoded Libraries Affinity Selection Platform for Binder Identification with Solid Support Protein Immobilization. 利用固态支撑蛋白固定技术识别粘合剂的高通量 DNA编码库亲和选择平台。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-04-19 DOI: 10.1089/adt.2024.010
Ramón Rama-Garda, Eduardo Domínguez, María Isabel Loza, M. Lallena, Jesús de Blas, Miguel Ángel Toledo, Rubén Haro
{"title":"High-Throughput DNA-Encoded Libraries Affinity Selection Platform for Binder Identification with Solid Support Protein Immobilization.","authors":"Ramón Rama-Garda, Eduardo Domínguez, María Isabel Loza, M. Lallena, Jesús de Blas, Miguel Ángel Toledo, Rubén Haro","doi":"10.1089/adt.2024.010","DOIUrl":"https://doi.org/10.1089/adt.2024.010","url":null,"abstract":"DNA-encoded libraries (DELs) have demonstrated to be one of the most powerful technologies within the ligand identification toolbox, widely used either in academia or biotech and pharma companies. DEL methodology utilizes affinity selection (AS) as the approach to interrogate the protein of interest for the identification of binders. Here we present a high-throughput, fully automated AS platform developed to fulfill industrial standards and compatible with different assay formats to improve the reproducibility of the AS process for DEL binders identification. This platform is flexible enough to virtually set aside all kinds of DELs and AS methods and conditions using immobilized proteins. It bears the two main immobilization methods to support of the proteins of interest: magnetic beads or resin tip columns. A combination of a broad variety of protocol options with a wide range of different experimental conditions can be set up with a throughput of 96 samples at the same time. In addition, small modifications of the protocols provide the platform with the versatility to run not only the routine DEL screens, but also test covalent libraries, the successful immobilization of the proteins of interest, and many other experiments that may be required. This versatile AS platform for DEL can be a powerful instrument for direct application of the technology in academic and industry settings.","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140682126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feature Engineering-Assisted Drug Repurposing on Disease-Drug Transcriptome Profiles in Gastric Cancer. 胃癌疾病-药物转录组图谱的特征工程辅助药物再利用
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-04-04 DOI: 10.1089/adt.2023.141
K. K. Kırboğa, M. Rudrapal
{"title":"Feature Engineering-Assisted Drug Repurposing on Disease-Drug Transcriptome Profiles in Gastric Cancer.","authors":"K. K. Kırboğa, M. Rudrapal","doi":"10.1089/adt.2023.141","DOIUrl":"https://doi.org/10.1089/adt.2023.141","url":null,"abstract":"Gastric cancer is one of the most common and deadly types of cancer in the world. To develop new biomarkers and drugs to diagnose and treat this cancer, it is necessary to identify the differences between the transcriptome profiles of gastric cancer and healthy individuals, identify critical genes associated with these differences, and make potential drug predictions based on these genes. In this study, using two gene expression datasets related to gastric cancer (GSE19826 and GSE79973), 200 genes that were ready for machine learning were selected, and their expression levels were analyzed. The best 100 genes for the model were chosen with the permutation feature importance method, and central genes, such as SCARB1, ETV3, SPATA17, FAM167A-AS1, and MTBP, which were shown to be associated with gastric cancer, were identified. Then, using the drug repurposing method with the Connectivity Map CLUE Query tools, potential drugs such as Forskolin, Gestrinone, Cediranib, Apicidine, and Everolimus, which showed a highly negative correlation with the expression levels of the selected genes, were identified. This study provides a method to develop new approaches to diagnosing and treating gastric cancer by comparing the transcriptome profiles of patients gastric cancer and performing a feature engineering-assisted drug repurposing analysis based on cancer data.","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140742000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomes: Key Players for Treatment of Cancer and Their Future Perspectives. 外泌体:癌症治疗的关键角色及其未来前景。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-04-01 Epub Date: 2024-02-26 DOI: 10.1089/adt.2023.026
Reena Gupta, Jitendra Gupta, Suchismita Roy
{"title":"Exosomes: Key Players for Treatment of Cancer and Their Future Perspectives.","authors":"Reena Gupta, Jitendra Gupta, Suchismita Roy","doi":"10.1089/adt.2023.026","DOIUrl":"10.1089/adt.2023.026","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Throughput Methods for the Discovery of Small Molecule Modulators of Pancreatic Beta-Cell Function and Regeneration. 发现胰腺 Beta 细胞功能和再生小分子调节剂的高通量方法。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2024-04-01 Epub Date: 2024-03-25 DOI: 10.1089/adt.2023.119
Sean M McCarty, Martin C Clasby, Jonathan Z Sexton
{"title":"High-Throughput Methods for the Discovery of Small Molecule Modulators of Pancreatic Beta-Cell Function and Regeneration.","authors":"Sean M McCarty, Martin C Clasby, Jonathan Z Sexton","doi":"10.1089/adt.2023.119","DOIUrl":"10.1089/adt.2023.119","url":null,"abstract":"<p><p>\u0000 <i>The progression of type II diabetes (T2D) is characterized by a complex and highly variable loss of beta-cell mass, resulting in impaired insulin secretion. Many T2D drug discovery efforts aimed at discovering molecules that can protect or restore beta-cell mass and function have been developed using limited beta-cell lines and primary rodent/human pancreatic islets. Various high-throughput screening methods have been used in the context of drug discovery, including luciferase-based reporter assays, glucose-stimulated insulin secretion, and high-content screening. In this context, a cornerstone of small molecule discovery has been the use of immortalized rodent beta-cell lines. Although insightful, this usage has led to a more comprehensive understanding of rodent beta-cell proliferation pathways rather than their human counterparts. Advantages gained in enhanced physiological relevance are offered by three-dimensional (3D) primary islets and pseudoislets in contrast to monolayer cultures, but these approaches have been limited to use in low-throughput experiments. Emerging methods, such as high-throughput 3D islet imaging coupled with machine learning, aim to increase the feasibility of integrating 3D microtissue structures into high-throughput screening. This review explores the current methods used in high-throughput screening for small molecule modulators of beta-cell mass and function, a potentially pivotal strategy for diabetes drug discovery.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug Repurposing Patent Applications October-December 2023. 2023 年 10 月至 12 月的药物再利用专利申请。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-04-01 Epub Date: 2024-03-05 DOI: 10.1089/adt.2024.011
Hermann A M Mucke
{"title":"Drug Repurposing Patent Applications October-December 2023.","authors":"Hermann A M Mucke","doi":"10.1089/adt.2024.011","DOIUrl":"10.1089/adt.2024.011","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Perspective on Various Facets of Nanoemulsions and its Commercial Utilities. 透视纳米乳剂的方方面面及其商业用途。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-04-01 Epub Date: 2024-03-14 DOI: 10.1089/adt.2023.042
Isha Mishra, Raghav Mishra, Ashutosh Dubey, Prashant Kumar Dhakad
{"title":"A Perspective on Various Facets of Nanoemulsions and its Commercial Utilities.","authors":"Isha Mishra, Raghav Mishra, Ashutosh Dubey, Prashant Kumar Dhakad","doi":"10.1089/adt.2023.042","DOIUrl":"10.1089/adt.2023.042","url":null,"abstract":"<p><p>\u0000 <i>Nanotechnology is a captivating contemporary technology owing to its extensive range of potential applications. This study emphasizes nanomaterials, substances with a size <100 nm, offering better qualities than coarse particles. Nanoparticles have several advantages compared with conventional drug delivery methods, including enhanced bioavailability and a larger surface area because of their smaller particle size. These characteristics make the nanoparticles a viable clinical candidate. Controlled-release drug delivery systems and targeted drug delivery systems rely heavily on nanoparticles. Because traditional drug delivery methods fail to achieve targeted drug delivery, resulting in toxicity, low bioavailability, poor therapeutic outcomes, and so on, these drug nanoparticles excel in all these areas. Researchers are already interested in developing drug delivery systems such as niosomes, bilosomes, and dendrimers. Nanoemulsion is one of these technologies; nanoemulsions outperform traditional emulsions in terms of pharmacodynamics and pharmacokinetics. Nanoemulsion effectively surpasses the constraints of standard emulsions, primarily by offering enhanced bioavailability, reduced toxicity, improved absorption, and the potential to be used in targeted drug delivery or controlled-release drug delivery systems. This particular work explores several aspects of nanoemulsions, including their constituents, classification, techniques for preparation, criteria for assessment, commercial applications, and future prospects.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140136418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential of Nanocarrier-Associated Approaches for Better Therapeutic Intervention in the Management of Glioblastoma. 纳米载体相关方法在胶质母细胞瘤治疗中更好的治疗干预潜力。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2024-02-01 Epub Date: 2024-01-09 DOI: 10.1089/adt.2023.073
Vikram, Shobhit Kumar, Javed Ali, Sanjula Baboota
{"title":"Potential of Nanocarrier-Associated Approaches for Better Therapeutic Intervention in the Management of Glioblastoma.","authors":"Vikram, Shobhit Kumar, Javed Ali, Sanjula Baboota","doi":"10.1089/adt.2023.073","DOIUrl":"10.1089/adt.2023.073","url":null,"abstract":"<p><p>\u0000 <i>Glioblastoma, commonly known as glioblastoma multiforme (GBM), is one of the deadliest and most invasive types of brain cancer. Two factors account for the majority of the treatment limitations for GBM. First, the presence of the blood-brain barrier (BBB) renders malignancy treatment ineffective, leading to recurrence without full recovery. Second, several adverse effects are associated with the drugs used in conventional GBM treatment. Recent studies have developed nanocarrier systems, such as liposomes, polymeric micelles, dendrimers, nanosuspensions, nanoemulsions, nanostructured lipid carriers, solid lipid nanocarriers, metal particles, and silica nanoparticles, which allow drug-loaded formulations to penetrate the BBB more effectively. This has opened up new possibilities for overcoming therapy issues. Extensive and methodical searches of databases such as PubMed, Science Direct, Google Scholar, and others were conducted to gather relevant literature for this work, using precise keyword combinations such as \"GBM,\" \"brain tumor,\" and \"nanocarriers.\" This review provides deep insights into the administration of drugs using nanocarriers for the management of GBM and explores new advancements in nanotechnology. It also highlights how scientific developments can be explained in connection with hopeful findings about the potential of nanocarriers for the future successful management of GBM.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139401569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信