Assay and drug development technologies最新文献

筛选
英文 中文
Roadmap to Cytotoxicity: Exploring Assays and Mechanisms.
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2025-02-10 DOI: 10.1089/adt.2024.109
Kirtivardhan Singh Shekhawat, Piyush Bhatia, Kartik Bhatnagar, Swati Shandilay, Sarika Chaudhary
{"title":"Roadmap to Cytotoxicity: Exploring Assays and Mechanisms.","authors":"Kirtivardhan Singh Shekhawat, Piyush Bhatia, Kartik Bhatnagar, Swati Shandilay, Sarika Chaudhary","doi":"10.1089/adt.2024.109","DOIUrl":"https://doi.org/10.1089/adt.2024.109","url":null,"abstract":"<p><p>\u0000 <i>Cytotoxicity assays are essential in the field of research as they enable the examination of cellular responses to stimuli and shed light on complex mechanisms involved in multiple diseases and drug development. This review covers a range of cytotoxicity assays, including trypan blue and MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assays, to more advanced techniques like caspase activity assays, Lactate dehydrogenase release assays, comet assays, and micronucleus assays for DNA damage assessment. Apart from these, other relevant assays like Alamar Blue, Bromodeoxyuridine incorporation, and clonogenic cell survival are also discussed. In this study, significance of these assays in drug development, toxicology studies, and biomedical research is discussed in detail, highlighting their role in ensuring safety and unraveling disease mechanisms. Furthermore, we explore emerging technologies such as chip-based assays, organ-on-a-chip systems, and high-throughput screening, which enhance precision and efficiency in research. Despite these advancements, challenges remain that necessitate standardization efforts and the development of more refined models. In conclusion, this review reflects on the evolving landscape of cytotoxicity assays, finding a balance between traditional methodologies and cutting-edge technologies.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Pioneer Review on Lactoferrin-Conjugated Extracellular Nanovesicles for Targeting Cellular Melanoma: Recent Advancements and Future Prospects. 乳铁蛋白结合的细胞外纳米囊泡靶向细胞黑色素瘤的先驱综述:最新进展和未来展望。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2025-02-01 Epub Date: 2024-12-10 DOI: 10.1089/adt.2024.045
Dilpreet Singh, Sonima Prasad
{"title":"A Pioneer Review on Lactoferrin-Conjugated Extracellular Nanovesicles for Targeting Cellular Melanoma: Recent Advancements and Future Prospects.","authors":"Dilpreet Singh, Sonima Prasad","doi":"10.1089/adt.2024.045","DOIUrl":"10.1089/adt.2024.045","url":null,"abstract":"<p><p>\u0000 <i>Melanoma, a highly aggressive form of skin cancer, presents a formidable challenge in terms of treatment due to its propensity for metastasis and resistance to conventional therapies. The development of innovative nanocarriers for targeted drug delivery has opened new avenues in cancer therapy. Lactoferrin-conjugated extracellular nanovesicles (LF-EVs) have emerged as a promising vehicle in the targeted treatment of cellular melanoma, owing to their natural biocompatibility, enhanced bioavailability, and ability to traverse biological barriers effectively. This review synthesizes recent advancements in the use of LF-EVs as a novel drug delivery system for melanoma, emphasizing their unique capacity to enhance cellular uptake through LF's receptor-mediated endocytosis pathways. Key studies demonstrate that LF conjugation significantly increases the specificity of extracellular nanovesicles for melanoma cells, minimizes off-target effects, and promotes efficient intracellular drug release. Furthermore, we explore how LF-EVs interact with the tumor microenvironment, potentially inhibiting melanoma progression and metastasis while supporting antitumor immune responses. Future prospects in this field include optimizing LF conjugation techniques, improving the scalability of LF-EV production, and integrating multifunctional payloads to target drug resistance mechanisms. This review highlights the potential of LF-EVs to transform melanoma treatment strategies, bridging current gaps in therapeutic delivery and paving the way for personalized and less invasive melanoma therapies.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"55-69"},"PeriodicalIF":1.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Silico Screening of Phytochemicals as Potential Inhibitors of the JAK/STATs Pathway in Psoriasis. 银屑病JAK/STATs通路潜在抑制剂植物化学物质的硅筛选
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2025-02-01 Epub Date: 2025-01-08 DOI: 10.1089/adt.2024.087
Lokendra Singh Rathor, Divya Sahu, Manju Singh, Deependra Singh
{"title":"<i>In Silico</i> Screening of Phytochemicals as Potential Inhibitors of the JAK/STATs Pathway in Psoriasis.","authors":"Lokendra Singh Rathor, Divya Sahu, Manju Singh, Deependra Singh","doi":"10.1089/adt.2024.087","DOIUrl":"10.1089/adt.2024.087","url":null,"abstract":"<p><p>\u0000 <i>The skin is a dynamic tissue that consists of different layers such as stratum corneum, the site for keratinocyte development and maturation for the natural changeover of skin. In psoriasis, this natural development of keratinocytes gets disturbed and aggregation of nucleated keratinocytes takes place in the epidermis of the skin, leading to the presence of scaly skin, which makes the patient physically, socially, and psychologically ill. Various natural, semisynthetic, and synthetic treatments are available. Still, semisynthetic or synthetic are mainly used to treat psoriasis with side effects on different parts of the body, which is life threatening. Various molecular target sites are getting upregulated such as Janus kinase/Signal transducer and activator of transcription (JAK/STATs), phosphodiesterase 4 (PDE4), mitogen-activated protein kinase (MAPK), platelet selectin (Pan Selectin), Tumor Necrosis Factor Alpha (TNF-α), Interleukin-23 (IL-23), Interleukin-17 (IL-17), and Tyrosine Kinase 2 (Tyk2) in psoriasis. Plants and their bioactive compounds of flavonoids, alkaloids, resins, tannins, glycosides, and terpenoids category are used in the treatment of psoriasis as topical, oral, and biological forms. Using a computational approach, the inhibition of these molecular targets can be studied and potential molecules can be identified. This research article aims to find out the potential molecules that can inhibit the molecular sites and are effective than synthetic ones.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"100-113"},"PeriodicalIF":1.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Golden Therapeutic Approach to Combat Viral Diseases Using Gold Nanomaterials. 利用金纳米材料对抗病毒性疾病的黄金治疗方法。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2025-02-01 Epub Date: 2024-12-11 DOI: 10.1089/adt.2024.071
Jasmine, Neelam Singh, Dheeraj Nagpal, Sanchit Puniani, Puneet Gupta
{"title":"Golden Therapeutic Approach to Combat Viral Diseases Using Gold Nanomaterials.","authors":"Jasmine, Neelam Singh, Dheeraj Nagpal, Sanchit Puniani, Puneet Gupta","doi":"10.1089/adt.2024.071","DOIUrl":"10.1089/adt.2024.071","url":null,"abstract":"<p><p>\u0000 <i>Gold nanoparticles (AuNPs), due to their unique properties and surface modification abilities, have become a promising carrier for a range of biomedical applications. AuNPs have intrinsic antiviral characteristics because of their capacity to enhance drug distribution by making antiviral medications more stable and soluble, which assures that higher quantities reach the intended site. Through surface changes, AuNPs can bind directly to viral particles or infected cells, increasing therapeutic efficiency and reducing side effects. AuNPs efficiently damage cell membranes and hinder viral reproduction within a host cell. Furthermore, because of their large surface area-to-volume ratio, which enables many functional groups to connect, improving interaction with virus particles and ceasing their multiplication. By altering dimensions and morphology or conjugating it with additional antiviral drugs, AuNPs can array their synergistic antiviral activity. Thus, the development of AuNP conjugated therapy presents a promising avenue to address the demand for novel anti-viral therapeutics against infections resistant to several drugs.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"70-83"},"PeriodicalIF":1.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Characterization of Oral Efavirenz-Loaded Nanostructured Lipid Carriers and Their Optimization with Box-Behnken Design Approach for the Neurological Disorder.
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2025-02-01 Epub Date: 2025-01-31 DOI: 10.1089/adt.2024.115
Ali Sartaj, Bushra Nabi, Ashif Iqubal, Nidhi Aggarwal, Kashif Haider, Sanjula Baboota, Javed Ali
{"title":"Development and Characterization of Oral Efavirenz-Loaded Nanostructured Lipid Carriers and Their Optimization with Box-Behnken Design Approach for the Neurological Disorder.","authors":"Ali Sartaj, Bushra Nabi, Ashif Iqubal, Nidhi Aggarwal, Kashif Haider, Sanjula Baboota, Javed Ali","doi":"10.1089/adt.2024.115","DOIUrl":"10.1089/adt.2024.115","url":null,"abstract":"<p><p><i>To enhance brain delivery of efavirenz (EFV), optimized nanostructured lipid carriers (NLCs) were developed using a melt-emulsification technique and probe sonication. Box-Behnken design was chosen to systematically analyze the effects of variables on formulation outcomes, enabling efficient optimization with fewer experimental trials. This selection helped to improve the formulation by allowing us to refine key characteristics such as particle size, entrapment efficiency, and polydispersity index (PDI). The optimized EFV-NLCs had a mean particle size of 91.41 ± 7.90 nm, a PDI of 0.28 ± 0.04, a zeta potential of -17 mV, an entrapment efficiency of 85 ± 7%, and a drug loading of 14 ± 1%. Transmission electron microscopy confirmed that the EFV-NLCs were spherical with uniform size distribution.</i> In vitro <i>release tests showed prolonged drug release, with release rates ranging from 63.09 ± 2.76% to 84.43 ± 4.24% at pH 1.2 and 87.66 ± 6.31% to 92.56 ± 1.48% at pH 6.8. This was significantly better than the EFV suspension, which showed moderate and unsustainable release rates over 8 h. Furthermore, dissolution studies in both fasted and fed state simulated-intestinal-fluids (FaSSIF and FeSSIF) over 6 h revealed that % cumulative drug release was significantly higher in FeSSIF (94.06 ± 1.62%) compared with FaSSIF (65.21 ± 3.95%), indicating enhanced absorption in the presence of food.</i> In vitro <i>gut permeation studies revealed that EFV-NLCs had a 2.05-fold higher drug permeability than the suspension. These findings suggest that EFV-NLCs are promising for targeted brain delivery, are safe for oral administration, and could be instrumental in managing neuro-acquired immunodeficiency syndrome.</i></p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"84-99"},"PeriodicalIF":1.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Anticancer Efficiency of Curcumin Co-Loaded Lawsone Solid Lipid Nanoparticles Against MCF-7 Breast Cancer Cell Lines: Optimization by Statistical JMP Software-Based Experimental Approach.
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2025-01-27 DOI: 10.1089/adt.2024.125
Shivarani Penugonda, Pranusha Beesappagari, Maddileti Repollu, Poojitha Badiginchala, Samreen Qudsiya, Chinni Usha Sree Mala, Ravi Gundawar, Bhargav Eranti
{"title":"Enhanced Anticancer Efficiency of Curcumin Co-Loaded Lawsone Solid Lipid Nanoparticles Against MCF-7 Breast Cancer Cell Lines: Optimization by Statistical JMP Software-Based Experimental Approach.","authors":"Shivarani Penugonda, Pranusha Beesappagari, Maddileti Repollu, Poojitha Badiginchala, Samreen Qudsiya, Chinni Usha Sree Mala, Ravi Gundawar, Bhargav Eranti","doi":"10.1089/adt.2024.125","DOIUrl":"https://doi.org/10.1089/adt.2024.125","url":null,"abstract":"<p><p>\u0000 <i>The present study highlighted enhancing the therapeutic effectiveness of curcumin (CUR) co-loaded lawsone (LS) through a solid lipid nanoparticles (SLNs)-based delivery system. The cetyl palmitate (CP), polyethylene glycol 400 (PEG), and probe sonication time (PS) were considered as independent variables whereas particle size and % entrapment efficiency (EE) were selected as dependent variables. The CUR-LS-SLN was developed by hot emulsification followed by probe sonication. A 2<sup>3</sup> factorial design was utilized in formulation development using JMP software version 17. Notably, the particle size and %EE of all the formulations were about 500 nm and greater than 75%, respectively. The zeta potential value was found to be -46.8 mV. From leverage plots significant and sensitive factors on particle size and %EE were identified. Contour plots led to the identification of an optimized formula whereby maintaining CP at 100 mg, PEG 400 at 6 mL, and PS at 10 min the desired particle size and %EE was achieved. TEM studies indicated the spherical shape of the particles. MTT assays of Michigan Cancer Foundation-7 (MCF-7) cells showed enhanced efficacy and greater cell inhibition of CUR-LS-SLN and combining both drugs using nanocarriers gave superior inhibition as compared with using either of the drugs evident from IC<sub>50</sub> values of 3.7, 9.4, and 2.5 μM, respectively, for CUR, LS, and CUR-LS-SLN. The cells in the combination mostly had irregular cell walls and cell shrinkage was noted and greater cell reduction was also seen. It was found that the enhanced cytotoxicity effect of MCF-7 cells on the developed formulation was attributed to the drug's synergistic actions, more efficient nanocarrier internalizations, and sustained drug release from the formulation. Stability studies indicated that the optimized SLN was stable for 6 months.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of the Box-Behnken Design in the Development and Optimization of Methotrexate-Loaded Microsponges for Colon Cancer. Box-Behnken设计在甲氨蝶呤结肠癌微海绵开发与优化中的应用。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2025-01-23 DOI: 10.1089/adt.2024.073
Mahendra Prajapati, Ranjit K Harwansh, Mohammad Akhlaquer Rahman, Rohitas Deshmukh
{"title":"Implementation of the Box-Behnken Design in the Development and Optimization of Methotrexate-Loaded Microsponges for Colon Cancer.","authors":"Mahendra Prajapati, Ranjit K Harwansh, Mohammad Akhlaquer Rahman, Rohitas Deshmukh","doi":"10.1089/adt.2024.073","DOIUrl":"https://doi.org/10.1089/adt.2024.073","url":null,"abstract":"<p><p>\u0000 <i>Methotrexate (MTX) is an effective anticancer agent with limited water solubility, resulting in lower absorption in the gastrointestinal tract when administered orally. The present aim of the study is to construct sustained-release formulation of MTX-loaded microsponges with enhanced intestinal absorption and bioavailability using a quasi-emulsion solvent diffusion method. The Box-Behnken design (BBD) was adopted for this purpose. Particle size, encapsulation efficiency (EE), Q 2 h % (% drug release in 2 h), and Q 24 h % (% drug release in 24 h) were used as dependent factors, and polyvinyl alcohol, solvent, and stirring speed were used as independent factors. The prepared microsponges were characterized to assess their particle size and encapsulation efficacy (%). Attenuated total reflectance-Fourier transform infrared spectroscopy and differential scanning calorimetry were used to verify the compatibility study. Moreover, the cytotoxicity study was conducted on the HT-29 cell line. The optimized formulation exhibited a % encapsulation efficacy of 87.191% and a particle size of 2.176 µm. Furthermore, the optimized formulation demonstrated sustained drug release (85.71%) in Simulated Gastric Fluid (SGF) fluid at different pHs 1.2, 6.8, and 7.4. The stability study of the optimized formulation revealed good stability in terms of drug release, % encapsulation efficacy, and particle size. The results of the optimized formulation demonstrated that the viability of HT-29 colon cancer (CC) cells was dose-dependently decreased by MTX-loaded microsponges. BBD was successfully employed for the development and optimization of MTX microsponges filled in Eudragit S-100-coated hard gelatin capsule, depicting their potential release of MTX from microsponges capsule only at the colonic region and found to be potential carrier system for CC.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Vitro Antiviral Assays: A Review of Laboratory Methods. 体外抗病毒检测:实验室方法综述。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2025-01-13 DOI: 10.1089/adt.2024.075
Gabriel Atampugbire, Eureka Emefa Ahadjie Adomako, Osbourne Quaye
{"title":"<i>In Vitro</i> Antiviral Assays: A Review of Laboratory Methods.","authors":"Gabriel Atampugbire, Eureka Emefa Ahadjie Adomako, Osbourne Quaye","doi":"10.1089/adt.2024.075","DOIUrl":"https://doi.org/10.1089/adt.2024.075","url":null,"abstract":"<p><p>\u0000 <i>Viral diseases remain a significant challenge for global health with rising fatalities each year. In vitro assays are crucial techniques that have been utilized by researchers in the quest to develop antiviral therapies. These assays mimic the internal conditions of a living system and make it possible to study how antiviral compounds interact with such systems in a laboratory setting. Thus, the importance of in vitro assays cannot be overemphasized, as they provide an accurate means for assessing the efficacy of potential antiviral compounds. This review offers an overview of in vitro antiviral assays, the different types of cell lines used, and emerging techniques and applications that have been developed in recent times. The current review also assesses challenges that are encountered in antiviral drug research, as well as emerging technologies like microfluidics and three-dimensional cell cultures. The integration of computational models and multiparametric assays into antiviral research was noted to significantly improve antiviral drug development process.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of Docetaxel-Zedoary Turmeric Oil Magnetic Solid Lipid Nanoparticle Preparation by Central Composite Design-Response Surface Methodology. 多西他赛-莪术油磁性固体脂质纳米粒制备的中心复合设计-响应面法优化。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2025-01-08 DOI: 10.1089/adt.2024.120
Yujiao Hou, Yuesheng Zhao, Jun Liu, Yanan Bao, Njolibimi Mosesmanaanye, Chunjie Zhao, Wenjing Li, Bo Hong
{"title":"Optimization of Docetaxel-Zedoary Turmeric Oil Magnetic Solid Lipid Nanoparticle Preparation by Central Composite Design-Response Surface Methodology.","authors":"Yujiao Hou, Yuesheng Zhao, Jun Liu, Yanan Bao, Njolibimi Mosesmanaanye, Chunjie Zhao, Wenjing Li, Bo Hong","doi":"10.1089/adt.2024.120","DOIUrl":"https://doi.org/10.1089/adt.2024.120","url":null,"abstract":"<p><p><i>To optimize the formulation of docetaxel-zedoary oil magnetic solid lipid nanoparticles (DTX-ZTO-MSLN) using central composite design-response surface methodology. First, the formulation and preparation process of DTX-ZTO-MSLN were optimized</i> via <i>design-response surface methodology. The appearance, particle size, thermogravimetric, pH, iron content, magnetic strength, and</i> in vitro <i>drug release of DTX-ZTO-MSLN were subsequently examined. Finally, the antitumor effect of DTX-ZTO-MSLN on MCF-7 breast cancer cells was measured</i> via <i>the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. The optimized formulation was as follows: the mass ratio of soybean phospholipid to poloxamer 188 was 0.34, the mass ratio of DTX-ZTO to glycerol monostearate was 3.23, and 29.42 mL of water was used. The DTX-ZTO-MSLN prepared by the optimized method was clear and transparent, with good stability, with an iron content of 7.38%, and a saturation magnetization intensity of 7.05 A·m<sup>2</sup>·kg<sup>-1</sup>. The</i> in vitro <i>drug release was consistent with the Weibull model (R<sup>2</sup> = 0.9992). Compared with zedoary turmeric oil and docetaxel, DTX-ZTO-MSLN had a much greater inhibitory effect on MCF-7 cells (p < 0.05).</i> <i>The optimized DTX-ZTO-MSLN meets the quality requirements for nanoemulsions. This study provides a theoretical basis for developing and applying DTX-ZTO-MSLN</i>.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug Repurposing Patent Applications July-September 2024. 药物再利用专利申请2024年7月至9月。
IF 1.6 4区 医学
Assay and drug development technologies Pub Date : 2025-01-01 Epub Date: 2024-11-29 DOI: 10.1089/adt.2024.126
Hermann A M Mucke
{"title":"Drug Repurposing Patent Applications July-September 2024.","authors":"Hermann A M Mucke","doi":"10.1089/adt.2024.126","DOIUrl":"10.1089/adt.2024.126","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"44-52"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信