{"title":"用网络药理学、分子对接和体外实验研究补中益气汤对神经源性膀胱的作用。","authors":"Yixin Bao, Chun Sun","doi":"10.1089/adt.2024.028","DOIUrl":null,"url":null,"abstract":"<p><p>\n <i>Buzhong Yiqi decoction (BZYQD) is a traditional Chinese medicine prescription for treating neurogenic bladder (NB). However, the underlying pharmacological mechanism remains unclear. This study aims to clarify the related molecular mechanism. Molecular structure information and targets of core components of BZYQD were obtained from Traditional Chinese Medicines Systems Pharmacology Platform (TCMSP) and SwissTargetPrediction databases. Genes involved in NB were obtained from Comparative Toxicogenomics Database, DisGeNet, GeneCards, and Online Mendelian Inheritance in Man databases. The hub targets of BZYQD in NB treatment were identified by protein-protein interaction (PPI) network analysis with STRING platform and analyzed by gene ontology analysis and the Kyoto Encyclopedia of Genes and Genomics pathway enrichment analysis. Molecular docking was used to verify the binding affinity between the hub targets and the bioactive components of BZYQD. Subsequently, the neuroprotective and anti-inflammatory effects of main bioactive components of BZYQD were investigated with <i>in vitro</i> assays. A total of 131 candidate compounds and 925 predicted target genes were screened. PPI network analysis suggested that ESR1, EGFR, HSP90AA1, MAPK3, AKT1, and CASP3 were the hub targets. BZYQD treatment was associated with hypoxia inducible factor-1 (HIF-1) signaling pathway. Dehydroglyasperin C (DGC), <i>N</i>-cis-feruloyltyramine, shinpterocarpin (SHI), gancaonin M, and glyasperin B, as the main bioactive components of BZYQD, had good binding affinity with hub target proteins. DGC and SHI treatment could significantly inhibit the injury of neurons and inflammatory response of microglia stimulated by oxidized low-density lipoprotein (ox-LDL), respectively. In summary, BZYQD and its main bioactive components DGC and SHI show good potential to ameliorate the symptoms of NB.</i>\n </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"237-250"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Role of Buzhong Yiqi Decoction on Neurogenic Bladder with Network Pharmacology, Molecular Docking, and <i>In Vitro</i> Assays.\",\"authors\":\"Yixin Bao, Chun Sun\",\"doi\":\"10.1089/adt.2024.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\n <i>Buzhong Yiqi decoction (BZYQD) is a traditional Chinese medicine prescription for treating neurogenic bladder (NB). However, the underlying pharmacological mechanism remains unclear. This study aims to clarify the related molecular mechanism. Molecular structure information and targets of core components of BZYQD were obtained from Traditional Chinese Medicines Systems Pharmacology Platform (TCMSP) and SwissTargetPrediction databases. Genes involved in NB were obtained from Comparative Toxicogenomics Database, DisGeNet, GeneCards, and Online Mendelian Inheritance in Man databases. The hub targets of BZYQD in NB treatment were identified by protein-protein interaction (PPI) network analysis with STRING platform and analyzed by gene ontology analysis and the Kyoto Encyclopedia of Genes and Genomics pathway enrichment analysis. Molecular docking was used to verify the binding affinity between the hub targets and the bioactive components of BZYQD. Subsequently, the neuroprotective and anti-inflammatory effects of main bioactive components of BZYQD were investigated with <i>in vitro</i> assays. A total of 131 candidate compounds and 925 predicted target genes were screened. PPI network analysis suggested that ESR1, EGFR, HSP90AA1, MAPK3, AKT1, and CASP3 were the hub targets. BZYQD treatment was associated with hypoxia inducible factor-1 (HIF-1) signaling pathway. Dehydroglyasperin C (DGC), <i>N</i>-cis-feruloyltyramine, shinpterocarpin (SHI), gancaonin M, and glyasperin B, as the main bioactive components of BZYQD, had good binding affinity with hub target proteins. DGC and SHI treatment could significantly inhibit the injury of neurons and inflammatory response of microglia stimulated by oxidized low-density lipoprotein (ox-LDL), respectively. In summary, BZYQD and its main bioactive components DGC and SHI show good potential to ameliorate the symptoms of NB.</i>\\n </p>\",\"PeriodicalId\":8586,\"journal\":{\"name\":\"Assay and drug development technologies\",\"volume\":\" \",\"pages\":\"237-250\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assay and drug development technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/adt.2024.028\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2024.028","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
补中益气汤是治疗神经源性膀胱(NB)的中药方剂。然而,潜在的药理学机制尚不清楚。本研究旨在阐明相关的分子机制。BZYQD核心成分的分子结构信息和靶点信息来源于中药系统药理学平台(TCMSP)和SwissTargetPrediction数据库。涉及NB的基因来自比较毒理学数据库、DisGeNet、GeneCards和在线孟德尔遗传数据库。BZYQD在NB处理中的枢纽靶点通过STRING平台的蛋白-蛋白相互作用(PPI)网络分析进行了鉴定,并通过基因本体分析和京都基因与基因组学百科全书途径富集分析进行了分析。通过分子对接验证枢纽靶点与BZYQD生物活性成分之间的结合亲和力。随后,通过体外实验研究了BZYQD主要生物活性成分的神经保护和抗炎作用。共筛选出131个候选化合物和925个预测靶基因。PPI网络分析提示ESR1、EGFR、HSP90AA1、MAPK3、AKT1和CASP3是枢纽靶点。BZYQD治疗与缺氧诱导因子-1 (HIF-1)信号通路相关。脱氢glyasperin C (DGC)、n -顺-阿魏酰基乙胺、shinpterocarpin (SHI)、甘草酸M和glyasperin B是BZYQD的主要生物活性成分,与hub靶蛋白具有良好的结合亲和力。DGC和SHI处理分别能显著抑制氧化低密度脂蛋白(ox-LDL)刺激的神经元损伤和小胶质细胞炎症反应。综上所述,BZYQD及其主要生物活性成分DGC和SHI具有良好的改善NB症状的潜力。
Investigating the Role of Buzhong Yiqi Decoction on Neurogenic Bladder with Network Pharmacology, Molecular Docking, and In Vitro Assays.
Buzhong Yiqi decoction (BZYQD) is a traditional Chinese medicine prescription for treating neurogenic bladder (NB). However, the underlying pharmacological mechanism remains unclear. This study aims to clarify the related molecular mechanism. Molecular structure information and targets of core components of BZYQD were obtained from Traditional Chinese Medicines Systems Pharmacology Platform (TCMSP) and SwissTargetPrediction databases. Genes involved in NB were obtained from Comparative Toxicogenomics Database, DisGeNet, GeneCards, and Online Mendelian Inheritance in Man databases. The hub targets of BZYQD in NB treatment were identified by protein-protein interaction (PPI) network analysis with STRING platform and analyzed by gene ontology analysis and the Kyoto Encyclopedia of Genes and Genomics pathway enrichment analysis. Molecular docking was used to verify the binding affinity between the hub targets and the bioactive components of BZYQD. Subsequently, the neuroprotective and anti-inflammatory effects of main bioactive components of BZYQD were investigated with in vitro assays. A total of 131 candidate compounds and 925 predicted target genes were screened. PPI network analysis suggested that ESR1, EGFR, HSP90AA1, MAPK3, AKT1, and CASP3 were the hub targets. BZYQD treatment was associated with hypoxia inducible factor-1 (HIF-1) signaling pathway. Dehydroglyasperin C (DGC), N-cis-feruloyltyramine, shinpterocarpin (SHI), gancaonin M, and glyasperin B, as the main bioactive components of BZYQD, had good binding affinity with hub target proteins. DGC and SHI treatment could significantly inhibit the injury of neurons and inflammatory response of microglia stimulated by oxidized low-density lipoprotein (ox-LDL), respectively. In summary, BZYQD and its main bioactive components DGC and SHI show good potential to ameliorate the symptoms of NB.
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts