含有木犀草素的海藻酸钙和黄芪胶混合口服微球的研制:体外表征、抗氧化、抗菌和抗癌结肠癌细胞系(HT-29)的活性

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Ameeduzzafar Zafar, Omar Awad Alsaidan, Md Ali Mujtaba, Saheen Sultana
{"title":"含有木犀草素的海藻酸钙和黄芪胶混合口服微球的研制:体外表征、抗氧化、抗菌和抗癌结肠癌细胞系(HT-29)的活性","authors":"Ameeduzzafar Zafar, Omar Awad Alsaidan, Md Ali Mujtaba, Saheen Sultana","doi":"10.1089/adt.2024.142","DOIUrl":null,"url":null,"abstract":"<p><p>\n <i>The utilization of herbal bioactive compounds for health maintenance is now increasing the interest of consumers because it has therapeutic benefits. Luteolin (LLN) is a natural bioactive compound and is found in various plant sources. It has many pharmacological activities, <i>i.e.</i>, anticancer, antidiabetic, antioxidant, anti-inflammatory, and antimicrobial. It has poor water solubility, leading to low dissolution, low bioavailability, and low therapeutic efficacy. The present research work was to develop the LLN-loaded gel microbeads using a combination of sodium alginate (SA) and gum tragacanth polymers to strengthen microbeads (BD) and enhance the therapeutic efficacy. The microbeads were prepared by using the ionotropic gelation method and evaluated by various physicochemical parameters, <i>i.e.</i>, particle size, encapsulation efficiency, swelling index, FITR, and X-ray diffraction study. The optimized microbeads (LLNBD3) showed a 97.63 ± 3.12% yield, 845 ± 6.21 μm in size, and 78.54 ± 3.65% drug entrapment efficiency. The microbeads exhibited excellent swelling in intestinal pH (6.8) compared with an acidic medium (pH 1.2). The LLNBD3 exhibited a sustained release profile (89.23 ± 2.51% in 12 h) with first-order release kinetics (R<sup>2</sup> = 0.9752) with the Fickian diffusion mechanism of drug release. The Fourier transform infrared spectra and X-ray diffractograms did not show any distinct peaks of LLN, revealing that the LLN was encapsulated into a microbeads matrix. The LLNBD3 showed significant antioxidant activity compared with pure LLN, confirmed by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method. In addition, it also showed remarkable in vitro anticancer activity against the colorectal cell line (HT-29) and antimicrobial activity against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>. The stability study demonstrated no significant change in swelling and release behavior. The finding concluded that tragacanth gum and SA microbeads could be promising drug carriers to improve the dissolution and oral delivery of herbal bioactive compounds and synthetic drugs.</i>\n </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Luteolin-Loaded Calcium Alginate and Gum Tragacanth Blend Microbeads for Oral Delivery: <i>In Vitro</i> Characterization, Antioxidant, Antimicrobial, and Anticancer Activity Against Colon Cancer Cell Line (HT-29).\",\"authors\":\"Ameeduzzafar Zafar, Omar Awad Alsaidan, Md Ali Mujtaba, Saheen Sultana\",\"doi\":\"10.1089/adt.2024.142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\n <i>The utilization of herbal bioactive compounds for health maintenance is now increasing the interest of consumers because it has therapeutic benefits. Luteolin (LLN) is a natural bioactive compound and is found in various plant sources. It has many pharmacological activities, <i>i.e.</i>, anticancer, antidiabetic, antioxidant, anti-inflammatory, and antimicrobial. It has poor water solubility, leading to low dissolution, low bioavailability, and low therapeutic efficacy. The present research work was to develop the LLN-loaded gel microbeads using a combination of sodium alginate (SA) and gum tragacanth polymers to strengthen microbeads (BD) and enhance the therapeutic efficacy. The microbeads were prepared by using the ionotropic gelation method and evaluated by various physicochemical parameters, <i>i.e.</i>, particle size, encapsulation efficiency, swelling index, FITR, and X-ray diffraction study. The optimized microbeads (LLNBD3) showed a 97.63 ± 3.12% yield, 845 ± 6.21 μm in size, and 78.54 ± 3.65% drug entrapment efficiency. The microbeads exhibited excellent swelling in intestinal pH (6.8) compared with an acidic medium (pH 1.2). The LLNBD3 exhibited a sustained release profile (89.23 ± 2.51% in 12 h) with first-order release kinetics (R<sup>2</sup> = 0.9752) with the Fickian diffusion mechanism of drug release. The Fourier transform infrared spectra and X-ray diffractograms did not show any distinct peaks of LLN, revealing that the LLN was encapsulated into a microbeads matrix. The LLNBD3 showed significant antioxidant activity compared with pure LLN, confirmed by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method. In addition, it also showed remarkable in vitro anticancer activity against the colorectal cell line (HT-29) and antimicrobial activity against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>. The stability study demonstrated no significant change in swelling and release behavior. The finding concluded that tragacanth gum and SA microbeads could be promising drug carriers to improve the dissolution and oral delivery of herbal bioactive compounds and synthetic drugs.</i>\\n </p>\",\"PeriodicalId\":8586,\"journal\":{\"name\":\"Assay and drug development technologies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assay and drug development technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/adt.2024.142\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2024.142","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

利用草药生物活性化合物来维持健康现在正增加消费者的兴趣,因为它具有治疗效益。木犀草素是一种天然的生物活性化合物,存在于多种植物中。它具有多种药理活性,即抗癌、抗糖尿病、抗氧化、抗炎和抗菌。水溶性差,溶出度低,生物利用度低,治疗效果差。本研究是利用海藻酸钠(SA)和黄甲胶聚合物复合制备负载lln的凝胶微球,以增强微球的强度,提高治疗效果。采用离子化凝胶法制备微球,并通过粒径、包封效率、溶胀指数、FITR和x射线衍射等理化参数对微球进行评价。优化后的微珠(LLNBD3)收率为97.63±3.12%,粒径为845±6.21 μm,包封效率为78.54±3.65%。与酸性培养基(pH 1.2)相比,微球在肠道pH(6.8)中表现出良好的肿胀。LLNBD3的缓释率为89.23±2.51% (12 h),一级释放动力学(R2 = 0.9752)符合Fickian扩散释放机制。傅里叶变换红外光谱和x射线衍射图未见明显的LLN峰,表明LLN被包裹在微珠基体中。与纯LLN相比,LLNBD3具有显著的抗氧化活性,经2,2-二苯基-1-吡啶肼(DPPH)法证实。此外,对结直肠癌细胞株HT-29也有明显的体外抗癌活性,对金黄色葡萄球菌和大肠杆菌也有明显的抑菌活性。稳定性研究表明,肿胀和释放行为没有明显变化。研究结果表明,黄芪胶和SA微珠可作为一种有效的药物载体,改善草药活性化合物和合成药物的溶出和口服给药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Luteolin-Loaded Calcium Alginate and Gum Tragacanth Blend Microbeads for Oral Delivery: In Vitro Characterization, Antioxidant, Antimicrobial, and Anticancer Activity Against Colon Cancer Cell Line (HT-29).

The utilization of herbal bioactive compounds for health maintenance is now increasing the interest of consumers because it has therapeutic benefits. Luteolin (LLN) is a natural bioactive compound and is found in various plant sources. It has many pharmacological activities, i.e., anticancer, antidiabetic, antioxidant, anti-inflammatory, and antimicrobial. It has poor water solubility, leading to low dissolution, low bioavailability, and low therapeutic efficacy. The present research work was to develop the LLN-loaded gel microbeads using a combination of sodium alginate (SA) and gum tragacanth polymers to strengthen microbeads (BD) and enhance the therapeutic efficacy. The microbeads were prepared by using the ionotropic gelation method and evaluated by various physicochemical parameters, i.e., particle size, encapsulation efficiency, swelling index, FITR, and X-ray diffraction study. The optimized microbeads (LLNBD3) showed a 97.63 ± 3.12% yield, 845 ± 6.21 μm in size, and 78.54 ± 3.65% drug entrapment efficiency. The microbeads exhibited excellent swelling in intestinal pH (6.8) compared with an acidic medium (pH 1.2). The LLNBD3 exhibited a sustained release profile (89.23 ± 2.51% in 12 h) with first-order release kinetics (R2 = 0.9752) with the Fickian diffusion mechanism of drug release. The Fourier transform infrared spectra and X-ray diffractograms did not show any distinct peaks of LLN, revealing that the LLN was encapsulated into a microbeads matrix. The LLNBD3 showed significant antioxidant activity compared with pure LLN, confirmed by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method. In addition, it also showed remarkable in vitro anticancer activity against the colorectal cell line (HT-29) and antimicrobial activity against Staphylococcus aureus and Escherichia coli. The stability study demonstrated no significant change in swelling and release behavior. The finding concluded that tragacanth gum and SA microbeads could be promising drug carriers to improve the dissolution and oral delivery of herbal bioactive compounds and synthetic drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Assay and drug development technologies
Assay and drug development technologies 医学-生化研究方法
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application. ASSAY and Drug Development Technologies coverage includes: -Assay design, target development, and high-throughput technologies- Hit to Lead optimization and medicinal chemistry through preclinical candidate selection- Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis- Approaches to assays configured for gene families, inherited, and infectious diseases- Assays and strategies for adapting model organisms to drug discovery- The use of stem cells as models of disease- Translation of phenotypic outputs to target identification- Exploration and mechanistic studies of the technical basis for assay and screening artifacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信