{"title":"Investigating the Role of Buzhong Yiqi Decoction on Neurogenic Bladder with Network Pharmacology, Molecular Docking, and <i>In Vitro</i> Assays.","authors":"Yixin Bao, Chun Sun","doi":"10.1089/adt.2024.028","DOIUrl":null,"url":null,"abstract":"<p><p>\n <i>Buzhong Yiqi decoction (BZYQD) is a traditional Chinese medicine prescription for treating neurogenic bladder (NB). However, the underlying pharmacological mechanism remains unclear. This study aims to clarify the related molecular mechanism. Molecular structure information and targets of core components of BZYQD were obtained from Traditional Chinese Medicines Systems Pharmacology Platform (TCMSP) and SwissTargetPrediction databases. Genes involved in NB were obtained from Comparative Toxicogenomics Database, DisGeNet, GeneCards, and Online Mendelian Inheritance in Man databases. The hub targets of BZYQD in NB treatment were identified by protein-protein interaction (PPI) network analysis with STRING platform and analyzed by gene ontology analysis and the Kyoto Encyclopedia of Genes and Genomics pathway enrichment analysis. Molecular docking was used to verify the binding affinity between the hub targets and the bioactive components of BZYQD. Subsequently, the neuroprotective and anti-inflammatory effects of main bioactive components of BZYQD were investigated with <i>in vitro</i> assays. A total of 131 candidate compounds and 925 predicted target genes were screened. PPI network analysis suggested that ESR1, EGFR, HSP90AA1, MAPK3, AKT1, and CASP3 were the hub targets. BZYQD treatment was associated with hypoxia inducible factor-1 (HIF-1) signaling pathway. Dehydroglyasperin C (DGC), <i>N</i>-cis-feruloyltyramine, shinpterocarpin (SHI), gancaonin M, and glyasperin B, as the main bioactive components of BZYQD, had good binding affinity with hub target proteins. DGC and SHI treatment could significantly inhibit the injury of neurons and inflammatory response of microglia stimulated by oxidized low-density lipoprotein (ox-LDL), respectively. In summary, BZYQD and its main bioactive components DGC and SHI show good potential to ameliorate the symptoms of NB.</i>\n </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2024.028","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Buzhong Yiqi decoction (BZYQD) is a traditional Chinese medicine prescription for treating neurogenic bladder (NB). However, the underlying pharmacological mechanism remains unclear. This study aims to clarify the related molecular mechanism. Molecular structure information and targets of core components of BZYQD were obtained from Traditional Chinese Medicines Systems Pharmacology Platform (TCMSP) and SwissTargetPrediction databases. Genes involved in NB were obtained from Comparative Toxicogenomics Database, DisGeNet, GeneCards, and Online Mendelian Inheritance in Man databases. The hub targets of BZYQD in NB treatment were identified by protein-protein interaction (PPI) network analysis with STRING platform and analyzed by gene ontology analysis and the Kyoto Encyclopedia of Genes and Genomics pathway enrichment analysis. Molecular docking was used to verify the binding affinity between the hub targets and the bioactive components of BZYQD. Subsequently, the neuroprotective and anti-inflammatory effects of main bioactive components of BZYQD were investigated with in vitro assays. A total of 131 candidate compounds and 925 predicted target genes were screened. PPI network analysis suggested that ESR1, EGFR, HSP90AA1, MAPK3, AKT1, and CASP3 were the hub targets. BZYQD treatment was associated with hypoxia inducible factor-1 (HIF-1) signaling pathway. Dehydroglyasperin C (DGC), N-cis-feruloyltyramine, shinpterocarpin (SHI), gancaonin M, and glyasperin B, as the main bioactive components of BZYQD, had good binding affinity with hub target proteins. DGC and SHI treatment could significantly inhibit the injury of neurons and inflammatory response of microglia stimulated by oxidized low-density lipoprotein (ox-LDL), respectively. In summary, BZYQD and its main bioactive components DGC and SHI show good potential to ameliorate the symptoms of NB.
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts