{"title":"Preparation and Optimization of Liposome Containing Thermosensitive <i>In Situ</i> Nasal Hydrogel System for Brain Delivery of Sumatriptan Succinate.","authors":"Dyandevi Mathure, Ashish Dilip Sutar, Hemantkumar Ranpise, Atmaram Pawar, Rajendra Awasthi","doi":"10.1089/adt.2022.088","DOIUrl":null,"url":null,"abstract":"<p><p>Drug absorption is improved by the intranasal route's wide surface area and avoidance of first-pass metabolism. For the treatment of central nervous system diseases such as migraine, intranasal administration delivers the medication to the brain. The study's purpose was to develop an <i>in situ</i> nasal hydrogel that contained liposomes that were loaded with sumatriptan succinate (SS). A thin-film hydration approach was used to create liposomes, and a 3<sup>2</sup> factorial design was used to optimize them. The optimized liposomes had a spherical shape, a 171.31 nm particle size, a high drug encapsulation efficiency of 83.54%, and an 8-h drug release of 86.11%. To achieve <i>in situ</i> gel formation, SS-loaded liposomes were added to the liquid gelling system of poloxamer-407, poloxamer-188, and sodium alginate. The final product was tested for mucoadhesive strength, viscosity, drug content, gelation temperature, and gelation time. Following intranasal delivery, <i>in vivo</i> pharmacokinetic investigations showed a significant therapeutic concentration of the medication in the brain with a C<sub>max</sub> value of 167 ± 78 ng/mL and an area under the curve value of 502 ± 63 ng/min·mL. For SS-loaded liposomal thermosensitive nasal hydrogel, significantly higher values of the nose-to-brain targeting parameters, that is, drug targeting index (2.61) and nose-to-brain drug direct transport (57.01%), confirmed drug targeting to the brain through the nasal route. Liposomes containing thermosensitive <i>in situ</i> hydrogel demonstrated potential for intranasal administration of SS.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 1","pages":"3-16"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2022.088","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 3
Abstract
Drug absorption is improved by the intranasal route's wide surface area and avoidance of first-pass metabolism. For the treatment of central nervous system diseases such as migraine, intranasal administration delivers the medication to the brain. The study's purpose was to develop an in situ nasal hydrogel that contained liposomes that were loaded with sumatriptan succinate (SS). A thin-film hydration approach was used to create liposomes, and a 32 factorial design was used to optimize them. The optimized liposomes had a spherical shape, a 171.31 nm particle size, a high drug encapsulation efficiency of 83.54%, and an 8-h drug release of 86.11%. To achieve in situ gel formation, SS-loaded liposomes were added to the liquid gelling system of poloxamer-407, poloxamer-188, and sodium alginate. The final product was tested for mucoadhesive strength, viscosity, drug content, gelation temperature, and gelation time. Following intranasal delivery, in vivo pharmacokinetic investigations showed a significant therapeutic concentration of the medication in the brain with a Cmax value of 167 ± 78 ng/mL and an area under the curve value of 502 ± 63 ng/min·mL. For SS-loaded liposomal thermosensitive nasal hydrogel, significantly higher values of the nose-to-brain targeting parameters, that is, drug targeting index (2.61) and nose-to-brain drug direct transport (57.01%), confirmed drug targeting to the brain through the nasal route. Liposomes containing thermosensitive in situ hydrogel demonstrated potential for intranasal administration of SS.
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts