AtmospherePub Date : 2024-09-01DOI: 10.3390/atmos15091058
Guanbo Zhou, Han Du
{"title":"The Diagnostic Analysis of the Thermodynamic Characteristics of Typhoon “Maysak” during Its Transformation Process","authors":"Guanbo Zhou, Han Du","doi":"10.3390/atmos15091058","DOIUrl":"https://doi.org/10.3390/atmos15091058","url":null,"abstract":"This study utilized high-resolution numerical simulation data from the WRF model to conduct a thermodynamic diagnosis of the process by which Typhoon “Maysak” transformed and merged with the Northeast Cold Vortex. The results indicated that the continuous intrusion of cold vortex air and the relative cold advection formed by the typhoon’s movement led to the demise of the typhoon’s warm core structure. The low-level low-pressure convergence and upper-level high-pressure divergence structure disappeared. After the transformation and merging with the Northeast Cold Vortex, the cyclone became cold throughout the entire layer, with a cold center appearing at low levels. During the process of the typhoon’s transformation and merging with the Northeast Cold Vortex, cold air accumulated near the low levels of the cyclone, causing the pseudo-adiabatic potential temperature lines to tilt and resulting in the slanted development of vertical vorticity in the mid-levels of the cyclone. After the typhoon transformed and merged with the Northeast Cold Vortex, the positive vertical vorticity advection at the bottom of the upper-level cold vortex trough promoted the cyclone’s development directly from the mid-levels to the upper levels, while the jet stream at the bottom of the cold vortex trough facilitated the maintenance of the positive vertical vorticity advection. Concurrently, the thermodynamic shear vorticity parameter could describe the typical vertical structure characteristics of the dynamic and thermodynamic fields above the rain area during the typhoon transformation process. In terms of temporal evolution trends, there was a certain correspondence with the development and movement of the ground rain area, and the perturbation thermodynamic divergence parameter had a good indicative effect on the area of heavy rainfall.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"84 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-09-01DOI: 10.3390/atmos15091057
Weihua Yuan, Zhi Li
{"title":"Nocturnal Extreme Rainfall over the Central Yungui Plateau under Cold and Warm Upper-Level Anomaly Backgrounds during Warm Seasons in 1980–2020","authors":"Weihua Yuan, Zhi Li","doi":"10.3390/atmos15091057","DOIUrl":"https://doi.org/10.3390/atmos15091057","url":null,"abstract":"The spatiotemporal and cloud features of the extreme rainfall under the warm and cold upper-level anomalies over the central Yungui Plateau (YGP) were investigated using the hourly rain gauge records, ERA5 reanalysis data, TRMM, and Fengyun satellite data, aiming to refine the understanding of different types of extreme rainfall. Extreme rainfall under an upper-level negative temperature anomaly (cold events) presents stronger convective cloud features when compared with the positive temperature anomaly (warm events). The maximum rainfall intensity and duration in cold events is much larger than that of warm events, while the brightness temperature of the cloud top is lower, and the ratio of convective rainfall is higher. In cold events, the middle-to-upper troposphere is dominated by a cold anomaly, and an unstable configuration with upper (lower) cold (warm) anomalies is observed around the central YGP. Although the upper-level temperature anomaly is positive, the anomalous divergence and convergence of southerly and northerly winds, as well as the strong moisture center and upward motions, are also found over the central YGP in warm events. The stronger atmospheric instability and higher convective energy under the upper-level cold anomalous circulation are closely associated with the rainfall features over the central YGP. The results indicate that the upper tropospheric temperature has significant influences on extreme rainfall, and thus more attention should be paid to the upper tropospheric temperature in future analyses.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"12 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-09-01DOI: 10.3390/atmos15091056
Giannis Ioannidis, Paul Tremper, Chaofan Li, Till Riedel, Nikolaos Rapkos, Christos Boikos, Leonidas Ntziachristos
{"title":"Integrating Cost-Effective Measurements and CFD Modeling for Accurate Air Quality Assessment","authors":"Giannis Ioannidis, Paul Tremper, Chaofan Li, Till Riedel, Nikolaos Rapkos, Christos Boikos, Leonidas Ntziachristos","doi":"10.3390/atmos15091056","DOIUrl":"https://doi.org/10.3390/atmos15091056","url":null,"abstract":"Assessing air quality in urban areas is vital for protecting public health, and low-cost sensor networks help quantify the population’s exposure to harmful pollutants effectively. This paper introduces an innovative method to calibrate air-quality sensor networks by combining CFD modeling with dependable AQ measurements. The developed CFD model is used to simulate traffic-related PM10 dispersion in a 1.6 × 2 km2 urban area. Hourly simulations are conducted, and the resulting concentrations are cross-validated against high-quality measurements. By offering detailed 3D information at a micro-scale, the CFD model enables the creation of concentration maps at sensor locations. Through regression analysis, relationships between low-cost sensor (LCS) readings and modeled outcomes are established and used for network calibration. The study demonstrates the methodology’s capability to provide aid to low-cost devices during a representative 24 h period. The precision of a CFD model can also guide optimal sensor placement based on prevailing meteorological and emission scenarios and refine existing networks for more accurate urban air quality representation. The usage of cost-effective air quality networks, high-quality monitoring stations, and high-resolution air quality modeling combines the strengths of both top-down and bottom-up approaches for air quality assessment. Therefore, the work demonstrated plays a significant role in providing reliable pollutant monitoring and supporting the assessment of environmental policies, aiming to address health issues related to urban air pollution.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"42 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-09-01DOI: 10.3390/atmos15091059
Conmin Chen, Chin-Shyan Chen, Tsai-Ching Liu
{"title":"Dust Storms Are Associated with an Increase in Outpatient Visits for Rheumatoid Arthritis","authors":"Conmin Chen, Chin-Shyan Chen, Tsai-Ching Liu","doi":"10.3390/atmos15091059","DOIUrl":"https://doi.org/10.3390/atmos15091059","url":null,"abstract":"Our study is the first to illuminate a previously underexplored dimension in the intricate interplay between environmental factors, specifically dust storms (DSs), and rheumatoid arthritis (RA) outcomes. An Auto Regressive Moving Average (ARMA) time-series estimation model was employed to analyze rheumatoid arthritis outpatient visits, dust storms, air pollution, and meteorology data in Taiwan from 2006 to 2012. The results show that females are three times more likely to experience RA-related issues and seek medical attention. Percentage analysis revealed a 10–15% increase in daily RA outpatient visits on post-event days 1 and 2 compared to non-DS days. However, the time-series estimation indicated a delayed and statistically significant (p < 0.05) increase in RA outpatient visits on post-event day 1 for males but not females. Additionally, a significant increase in RA outpatient visits (p < 0.05) was observed on post-event day 1 among individuals aged 61 and above. Environmental factors such as temperature and SO2 showed strong significance across all genders and age groups (p < 0.001). The findings highlight distinct gender and age disparities regarding the impacts of DS on RA outpatient visits, emphasizing the heightened sensitivity of males to environmental pollutants and the vulnerability of the elderly population.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"23 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-09-01DOI: 10.3390/atmos15091055
Gang Zheng, Guanghui Wei, Fanghong Han, Yan Cao, Fan Gao
{"title":"Study on the Response Mechanism of Climate and Land Use Change to Evapotranspiration in Aksu River Basin","authors":"Gang Zheng, Guanghui Wei, Fanghong Han, Yan Cao, Fan Gao","doi":"10.3390/atmos15091055","DOIUrl":"https://doi.org/10.3390/atmos15091055","url":null,"abstract":"Research on evapotranspiration and its drivers in the Aksu River Basin from the perspectives of climate change and land use is of great significance for promoting the efficient use and precise allocation of its water resources. Theil-Sen median trend analysis (T-S) and the Mann–Kendall nonparametric test (M-K), in addition to correlation analysis, partial correlation analysis, complex correlation analysis, and driving-factor zoning principles, were used to examine the characteristics of the spatiotemporal changes in evapotranspiration and to explore the driving mechanism of the changes in evapotranspiration. The results indicated that the range of fluctuations in the multiyear average evapotranspiration in the Aksu River Basin from 2001 to 2020 was between 481.58 and 772.37 mm/a, which showed the spatial distribution characteristics of being high in the west and central part of the basin, and low in the north and south of the basin. The positive correlation between evapotranspiration and precipitation was stronger, and the negative correlations with temperature and relative humidity were stronger. The change in evapotranspiration in cultivated land is mainly driven by precipitation and relative humidity × precipitation; for grassland, the main drivers were relative humidity and precipitation × relative humidity; for woodland, the main drivers were relative humidity and other climatic factors; and for other land types, the main drivers were other climatic factors.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"68 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-08-31DOI: 10.3390/atmos15091054
Mehdi Farhane, Otmane Souhar
{"title":"Generalized 3D Model of Crosswind Concentrations and Deposition in the Atmospheric Boundary Layer","authors":"Mehdi Farhane, Otmane Souhar","doi":"10.3390/atmos15091054","DOIUrl":"https://doi.org/10.3390/atmos15091054","url":null,"abstract":"In this paper, we introduce a comprehensive solution aimed at enhancing our understanding of three-dimensional atmospheric pollutant dispersion. This innovative solution involves the development of a generalized model that extends previous research and is applicable to all parameterization schemes of these equations, including wind speed profiles and turbulent diffusion coefficients, while incorporating the dry deposition criterion. Our methodology involves subdividing the atmospheric boundary layer into distinct sub-layers, which facilitates a detailed examination of pollutant dispersion dynamics. Extensive validation with data from the Hanford experiment has demonstrated the accuracy of this solution in simulating pollutant concentrations. The results demonstrate that there is a strong correlation between the projected and observed concentrations, underscoring the statistical reliability of our approach. This validation situates the statistical indices of our solution within an acceptable range, confirming its accuracy in predicting atmospheric pollutant dispersion. These findings thus establish our solution as a valid and effective method for studying complex environmental phenomena.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"74 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-08-30DOI: 10.3390/atmos15091050
Xiaoming Xu
{"title":"Spatiotemporal Trends and Variations in Rainfall Erosivity in the East Qinling Mountains and the Environmental Impacts","authors":"Xiaoming Xu","doi":"10.3390/atmos15091050","DOIUrl":"https://doi.org/10.3390/atmos15091050","url":null,"abstract":"A better understanding of the spatiotemporal variation characteristics of rainfall erosivity and effects of extreme rainfall events on soil erosion is the basis for improved water resource planning, protection, and ecological restoration in the Qinling Mountains. Using long-term daily precipitation data from 19 national standard meteorological stations from 1957 to 2018, the spatiotemporal variation trend of rainfall erosivity was explored. A linear regression analysis method was used to detect trends in rainfall erosivity. The spatial pattern of rainfall erosivity, which is based on annual, seasonal, and extreme rainfall indices, was analyzed via a geospatial interpolation method. Effects of natural factors and human activities on soil erosion at different stages were examined via the double cumulative curve method. The average annual rainfall erosivity in the Shangluo area is 2306 MJ mm ha−1 h−1 year−1 and generally displays a gradual decreasing trend from southeast to northwest. Over the last 60 years, the annual R exhibited a nonsignificant increasing trend (p > 0.05). Overall, rainfall erosivity showed a phased trend with an increasing trend after 2000. Rainfall erosivity from June to September accounts for 78.5% of the annual total, while the annual R is mainly determined by a few rainfall events during the year. RX1d and RX5d account for 20–40% and 60–80%, respectively, of the total annual R and are likely to result in severe soil erosion in sloping cultivated land areas, agricultural lands, and dirt roads with continued climate change. Implementation of the National Natural Forest Protection Project and the ‘Grain for Green’ Project significantly reduced the intensity and scope of soil erosion in the area. This study aids in understanding the ecohydrological processes and soil erosion and sediment transport characteristics in the Qinling Mountains and promotes water resource protection and management along the middle route of the South-to-North Water Diversion Project.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"392 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-08-30DOI: 10.3390/atmos15091049
Islam Abohela, Raveendran Sundararajan
{"title":"Analytical Review of Wind Assessment Tools for Urban Wind Turbine Applications","authors":"Islam Abohela, Raveendran Sundararajan","doi":"10.3390/atmos15091049","DOIUrl":"https://doi.org/10.3390/atmos15091049","url":null,"abstract":"Due to the complex nature of the built environment, urban wind flow is unpredictable and characterised by high levels of turbulence and low mean wind speed. Yet, there is a potential for harnessing urban wind power by carefully integrating wind turbines within the built environment at the optimum locations. This requires a thorough investigation of wind resources to use the suitable wind turbine technology at the correct location—thus, the need for an accurate assessment of wind resources at the proposed site. This paper reviews the commonly used wind assessment tools for the urban wind flow to identify the optimum tool to be used prior to integrating wind turbines in urban areas. In situ measurements, wind tunnel tests, and CFD simulations are analysed and reviewed through their advantages and disadvantages in assessing urban wind flows. The literature shows that CFD simulations are favoured over other most commonly used tools because the tool is relatively easier to use, more efficient in comparing alternative design solutions, and can effectively communicate data visually. The paper concludes with recommendations on best practice guidelines for using CFD simulation in assessing the wind flow within the built environment and emphasises the importance of validating CFD simulation results by other available tools to avoid any associated uncertainties.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"23 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-08-12DOI: 10.3390/atmos15080960
Izabela Pawlak, Janusz Krzyścin, Janusz Jarosławski
{"title":"Long-Term Variability of Surface Ozone and Its Associations with NOx and Air Temperature Changes from Air Quality Monitoring at Belsk, Poland, 1995–2023","authors":"Izabela Pawlak, Janusz Krzyścin, Janusz Jarosławski","doi":"10.3390/atmos15080960","DOIUrl":"https://doi.org/10.3390/atmos15080960","url":null,"abstract":"Surface ozone (O3) and nitrogen oxides (NOx = NO + NO2) measured at the rural station in Belsk (51.83° N, 20.79° E), Poland, over the period of 1995−2023, were examined for long-term variability of O3 and its relationship to changes in the air temperature and NOx. Negative and positive trends were found for the 95th and 5th percentile, respectively, in the O3 data. A weak positive correlation (statistically significant) of 0.33 was calculated between O3 and the temperature averaged from sunrise to sunset during the photoactive part of the year (April–September). Recently, O3 maxima have become less sensitive to temperature changes, reducing the incidence of photochemical smog. The ozone–climate penalty factor decreased from 4.4 µg/m3/°C in the 1995–2004 period to 3.9 µg/m3/°C in the 2015−2023 period. The relationship between Ox (O3 + NO2) and NOx concentrations averaged from sunrise to sunset determined the local and regional contribution to Ox variability. The seasonal local and regional contributions remained unchanged in the period of 1995−2023, stabilizing the average O3 level at Belsk. “NOx-limited” and “VOC-limited” photochemical regimes prevailed in the summer and autumn, respectively. For many winter and spring seasons between 1995 and 2023, the type of photochemical regime could not be accurately determined, making it difficult to build an effective O3 mitigation policy.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"43 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of GNSS-TEC Data-Driven IRI-2016 Model for Electron Density","authors":"Jing Peng, Yunbin Yuan, Yanwen Liu, Hongxing Zhang, Ting Zhang, Yifan Wang, Zelin Dai","doi":"10.3390/atmos15080958","DOIUrl":"https://doi.org/10.3390/atmos15080958","url":null,"abstract":"The ionosphere is one of the important error sources that affect the communication of radio signals. The international reference ionosphere (IRI) model is a commonly used model to describe ionospheric parameters. The driving parameter IG12 of the IRI-2016 model was optimally updated based on GNSS-TEC data from 2015 and 2019. The electron density profiles and NmF2 calculated by the IRI-2016 model (upda-IRI-2016) driven by the updated IG12 value (IG-up) were evaluated for their accuracy using ionosonde observations and COSMIC inversion data. The experiments show that both the electron density profiles and NmF2 calculated by upda-IRI-2016 driven by IG-up show significant optimization effects, compared to the IRI-2016 model driven by IG12. For electron density, the precision improvement (PI) for both MAE and RMSE at the Beijing station exceed 31.2% in January 2015 and 16.0% in January 2019. While the PI of MAE and RMSE at the Wuhan station, which is located at a lower latitude, both exceed 32.5% in January 2015, both exceed 42.1% in January 2019, which is significantly higher than that of the Beijing station. In 2015, the PI of MAE and RMSE compared with COSMIC are both higher than 20%. For NmF2, the PI is greater for low solar activity years and low latitude stations, with the Wuhan station showing a PI of more than 11.7% in January 2019 compared to January 2015. The PI compared to COSMIC was higher than 17.2% in 2015.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"8 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}