{"title":"厄尔尼诺-南方涛动对阿拉伯半岛春季沙尘变化的影响","authors":"Yazeed Alsubhi, Gohar Ali","doi":"10.3390/atmos15091060","DOIUrl":null,"url":null,"abstract":"This study investigates the dust aerosol optical depth (DAOD) variability over the Arabian Peninsula (AP) in the spring season, a region profoundly affected by dust activity due to its desert terrain. Employing the MERRA-2 DAOD reanalysis dataset for the period 1981–2022, a significant trend in DAOD is noted in the spring season compared to the other seasons. The leading Empirical Orthogonal Function (EOF) explains 67% of the total DAOD variance during the spring season, particularly over the central and northeastern parts of AP. The analysis reveals the strengthening of upper-level divergence over the western Pacific, favoring mid-tropospheric positive geopotential height anomalies over the AP, leading to warm and drier surface conditions and increased DAOD. A statistically significant negative relationship (correlation = −0.32, at 95% confidence level) is noted between DAOD over AP and the El Niño-Southern Oscillation (ENSO), suggesting that La Niña conditions may favor higher dust concentrations over the AP region and vice versa during El Niño phase. The high (low) DAOD over the region corresponds to mid-tropospheric positive (negative) geopotential height anomalies through strengthening (weakening) of the upper-level divergence (convergence) over the western Pacific during the La Niña (El Niño) phase. This study shows that ENSO could be a possible precursor to predicting dust variability on a seasonal time scale.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"8 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of El Niño-Southern Oscillation on Dust Variability during the Spring Season over the Arabian Peninsula\",\"authors\":\"Yazeed Alsubhi, Gohar Ali\",\"doi\":\"10.3390/atmos15091060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the dust aerosol optical depth (DAOD) variability over the Arabian Peninsula (AP) in the spring season, a region profoundly affected by dust activity due to its desert terrain. Employing the MERRA-2 DAOD reanalysis dataset for the period 1981–2022, a significant trend in DAOD is noted in the spring season compared to the other seasons. The leading Empirical Orthogonal Function (EOF) explains 67% of the total DAOD variance during the spring season, particularly over the central and northeastern parts of AP. The analysis reveals the strengthening of upper-level divergence over the western Pacific, favoring mid-tropospheric positive geopotential height anomalies over the AP, leading to warm and drier surface conditions and increased DAOD. A statistically significant negative relationship (correlation = −0.32, at 95% confidence level) is noted between DAOD over AP and the El Niño-Southern Oscillation (ENSO), suggesting that La Niña conditions may favor higher dust concentrations over the AP region and vice versa during El Niño phase. The high (low) DAOD over the region corresponds to mid-tropospheric positive (negative) geopotential height anomalies through strengthening (weakening) of the upper-level divergence (convergence) over the western Pacific during the La Niña (El Niño) phase. This study shows that ENSO could be a possible precursor to predicting dust variability on a seasonal time scale.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15091060\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091060","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Impact of El Niño-Southern Oscillation on Dust Variability during the Spring Season over the Arabian Peninsula
This study investigates the dust aerosol optical depth (DAOD) variability over the Arabian Peninsula (AP) in the spring season, a region profoundly affected by dust activity due to its desert terrain. Employing the MERRA-2 DAOD reanalysis dataset for the period 1981–2022, a significant trend in DAOD is noted in the spring season compared to the other seasons. The leading Empirical Orthogonal Function (EOF) explains 67% of the total DAOD variance during the spring season, particularly over the central and northeastern parts of AP. The analysis reveals the strengthening of upper-level divergence over the western Pacific, favoring mid-tropospheric positive geopotential height anomalies over the AP, leading to warm and drier surface conditions and increased DAOD. A statistically significant negative relationship (correlation = −0.32, at 95% confidence level) is noted between DAOD over AP and the El Niño-Southern Oscillation (ENSO), suggesting that La Niña conditions may favor higher dust concentrations over the AP region and vice versa during El Niño phase. The high (low) DAOD over the region corresponds to mid-tropospheric positive (negative) geopotential height anomalies through strengthening (weakening) of the upper-level divergence (convergence) over the western Pacific during the La Niña (El Niño) phase. This study shows that ENSO could be a possible precursor to predicting dust variability on a seasonal time scale.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.