{"title":"Effects of Ammonia Mitigation on Secondary Organic Aerosol and Ammonium Nitrate Particle Formation in Photochemical Reacted Gasoline Vehicle Exhausts","authors":"Hiroyuki Hagino, Risa Uchida","doi":"10.3390/atmos15091061","DOIUrl":null,"url":null,"abstract":"Gaseous air pollutants emitted primarily by anthropogenic sources form secondary products through photochemical reactions, complicating the regulatory analysis of anthropogenic emissions in the atmosphere. We used an environmental chassis dynamometer and a photochemical smog chamber to conduct a parameter sensitivity experiment to investigate the formation of secondary products from a gasoline passenger car. To simulate the mitigation of ammonia emissions from gasoline vehicle exhausts assuming future emission controls and to allow photochemical oxidation and aging of the vehicle exhaust, ammonia was selectively removed by a series of five denuders installed between the vehicle and photochemical smog chamber. Overall, there were no differences in the formation of secondary organic aerosols and ozone with or without ammonia mitigation. However, the potential for ammonium nitrate particle formation was significantly reduced with ammonia mitigation. In addition, ammonia mitigation resulted in increased aerosol acidity due to nitric acid in the gas phase not being neutralized by ammonia and condensing onto the liquid particle phase, indicating a potentially important secondary effect associated with ammonia mitigation. Thus, we provide new insights into the effects of ammonia mitigation on secondary emissions from gasoline vehicle exhaust and into a potentially useful experimental approach for determining primary and secondary emissions.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"13 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091061","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Gaseous air pollutants emitted primarily by anthropogenic sources form secondary products through photochemical reactions, complicating the regulatory analysis of anthropogenic emissions in the atmosphere. We used an environmental chassis dynamometer and a photochemical smog chamber to conduct a parameter sensitivity experiment to investigate the formation of secondary products from a gasoline passenger car. To simulate the mitigation of ammonia emissions from gasoline vehicle exhausts assuming future emission controls and to allow photochemical oxidation and aging of the vehicle exhaust, ammonia was selectively removed by a series of five denuders installed between the vehicle and photochemical smog chamber. Overall, there were no differences in the formation of secondary organic aerosols and ozone with or without ammonia mitigation. However, the potential for ammonium nitrate particle formation was significantly reduced with ammonia mitigation. In addition, ammonia mitigation resulted in increased aerosol acidity due to nitric acid in the gas phase not being neutralized by ammonia and condensing onto the liquid particle phase, indicating a potentially important secondary effect associated with ammonia mitigation. Thus, we provide new insights into the effects of ammonia mitigation on secondary emissions from gasoline vehicle exhaust and into a potentially useful experimental approach for determining primary and secondary emissions.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.