AtmospherePub Date : 2024-08-10DOI: 10.3390/atmos15080954
Colleen Jones, Huy Tran, Trang Tran, Seth Lyman
{"title":"Assimilating Satellite-Derived Snow Cover and Albedo Data to Improve 3-D Weather and Photochemical Models","authors":"Colleen Jones, Huy Tran, Trang Tran, Seth Lyman","doi":"10.3390/atmos15080954","DOIUrl":"https://doi.org/10.3390/atmos15080954","url":null,"abstract":"During wintertime temperature inversion episodes, ozone in the Uinta Basin sometimes exceeds the standard of 70 ppb set by the US Environmental Protection Agency. Since ozone formation depends on sunlight, and less sunlight is available during winter, wintertime ozone can only form if snow cover and albedo are high. Researchers have encountered difficulties replicating high albedo values in 3-D weather and photochemical transport model simulations for winter episodes. In this study, a process to assimilate MODIS satellite data into WRF and CAMx models was developed, streamlined, and tested to demonstrate the impacts of data assimilation on the models’ performance. Improvements to the WRF simulation of surface albedo and snow cover were substantial. However, the impact of MODIS data assimilation on WRF performance for other meteorological quantities was minimal, and it had little impact on ozone concentrations in the CAMx photochemical transport model. The contrast between the data assimilation and reference cases was greater for a period with no new snow since albedo appears to decrease too rapidly in default WRF and CAMx configurations. Overall, the improvement from MODIS data assimilation had an observed enhancement in the spatial distribution and temporal evolution of surface characteristics on meteorological quantities and ozone production.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"3 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-08-08DOI: 10.3390/atmos15080949
Xiaoting Zhou, Zhiqiang Liu, Lang Wu, Yangqing Wang
{"title":"Study on CO2 Emission Forecast of “Four Provinces of Mountains and Rivers” Based on Time-SeriesMachine Learning","authors":"Xiaoting Zhou, Zhiqiang Liu, Lang Wu, Yangqing Wang","doi":"10.3390/atmos15080949","DOIUrl":"https://doi.org/10.3390/atmos15080949","url":null,"abstract":"CO2 emissions prediction plays a key role in atmospheric environment management and regional sustainable development. Taking the Four Provinces of Mountains and Rivers (Henan, Hebei, Shandong, and Shanxi) in China as an example, the Autoregressive Integrated Moving Average Model (ARIMA) and random forest importance analysis were used to calculate the future trend of the CO2 emission–influencing factors and obtain the main influencing factors. Based on the above, BP neural network (BPNN), support vector machine (SVR), and random forest (RF) models were used to predict the future apparent CO2 emissions of the four provinces. The results show that, in general, population, coal consumption, and per capita GDP are the main factors influencing CO2 emissions. The RF model has the best prediction performance; for instance, RMSE (81.86), R2 (0.905), and MAE (64.69). The prediction results show that the total apparent CO2 emissions of the Four Provinces of Mountains and Rivers will peak in 2028 (with a peak of about 4500 Mt). The apparent CO2 emissions of Henan, Hebei, and Shandong Province peaked in 2011 (with a peak of about 654 Mt), 2013 (with a peak of about 657 Mt), and 2020 (with a peak of about 1273 Mt), respectively. Shanxi is forecast to reach its peak (with a peak of about 2486 Mt) in 2029. The apparent CO2 emissions of all provinces showed an obvious downward trend after reaching their peak. Henan, Hebei Shandong, and Shanxi showed a significant downward trend in 2018, 2023, and 2032, respectively.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"30 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-08-08DOI: 10.3390/atmos15080948
Sarah Balkissoon, Y. Charles Li, Anthony R. Lupo, Samuel Walsh, Lukas McGuire
{"title":"On the Relation between Wind Speed and Maximum or Mean Water Wave Height","authors":"Sarah Balkissoon, Y. Charles Li, Anthony R. Lupo, Samuel Walsh, Lukas McGuire","doi":"10.3390/atmos15080948","DOIUrl":"https://doi.org/10.3390/atmos15080948","url":null,"abstract":"Dimensional analysis shows that the relation between wind speed and maximum or mean water wave height takes the form H=cU02g, where H is the maximum or mean water wave height caused by wind of speed U0, g is the gravitational acceleration, and c is a dimensionless constant. This relation is important in predicting the maximum or mean water wave height caused by a tropical cyclone. Firstly, the mathematical and theoretical justification for determining c is presented. Verification is conducted using four tropical cyclones as case studies for determining c using significant wave heights rather than the overall maximum and mean. The observed values of c are analyzed statistically. On the days when the fixed buoy captured the highest wind speeds, the frequency distributions of the data for c are close to a bell shape with very small standard deviations in comparison with the mean values; thus, the mean values provide good predictions for c. In view of the fact that tropical cyclone waves are turbulent and the background waves caused by many other factors such as lunar tidal effect cannot be ignored, the obtained results for c are quite satisfactory. This method provides a direct approach in the prediction of the wave height or the wind speeds given the c value and can serve an interpolation methodology to increase the temporal resolution of the data.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"76 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-08-07DOI: 10.3390/atmos15080946
Francesco D’Amico, Ivano Ammoscato, Daniel Gullì, Elenio Avolio, Teresa Lo Feudo, Mariafrancesca De Pino, Paolo Cristofanelli, Luana Malacaria, Domenico Parise, Salvatore Sinopoli, Giorgia De Benedetto, Claudia Roberta Calidonna
{"title":"Integrated Analysis of Methane Cycles and Trends at the WMO/GAW Station of Lamezia Terme (Calabria, Southern Italy)","authors":"Francesco D’Amico, Ivano Ammoscato, Daniel Gullì, Elenio Avolio, Teresa Lo Feudo, Mariafrancesca De Pino, Paolo Cristofanelli, Luana Malacaria, Domenico Parise, Salvatore Sinopoli, Giorgia De Benedetto, Claudia Roberta Calidonna","doi":"10.3390/atmos15080946","DOIUrl":"https://doi.org/10.3390/atmos15080946","url":null,"abstract":"Due to its high short-term global warming potential (GWP) compared to carbon dioxide, methane (CH4) is a considerable agent of climate change. This research is aimed at analyzing data on methane gathered at the GAW (Global Atmosphere Watch) station of Lamezia Terme (Calabria, Southern Italy) spanning seven years of continuous measurements (2016–2022) and integrating the results with key meteorological data. Compared to previous studies on detected methane mole fractions at the same station, daily-to-yearly patterns have become more prominent thanks to the analysis of a much larger dataset. Overall, the yearly increase of methane at the Lamezia Terme station is in general agreement with global measurements by NOAA, though local peaks are present, and an increase linked to COVID-19 is identified. Seasonal changes and trends have proved to be fully cyclic, with the daily cycles being largely driven by local wind circulation patterns and synoptic features. Outbreak events have been statistically evaluated depending on their weekday of occurrence to test possible correlations with anthropogenic activities. A cross analysis between methane peaks and specific wind directions has also proved that local sources may be deemed responsible for the highest mole fractions.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"198 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbon and Water Balances in a Watermelon Crop Mulched with Biodegradable Films in Mediterranean Conditions at Extended Growth Season Scale","authors":"Rossana M. Ferrara, Alessandro Azzolini, Alessandro Ciurlia, Gabriele De Carolis, Marcello Mastrangelo, Valerio Minorenti, Alessandro Montaghi, Mariagrazia Piarulli, Sergio Ruggieri, Carolina Vitti, Nicola Martinelli, Gianfranco Rana","doi":"10.3390/atmos15080945","DOIUrl":"https://doi.org/10.3390/atmos15080945","url":null,"abstract":"The carbon source/sink nature and the water balance of a drip-irrigated and mulched watermelon cultivated under a semi-arid climate were investigated. Biodegradable films, plants and some fruits were left on the soil as green manure. The study spanned from watermelon planting to the subsequent crop (June–November 2023). The eddy covariance technique was employed to monitor water vapor (H2O) and carbon dioxide (CO2) fluxes, which were partitioned into transpiration, evaporation, photosynthesis and respiration, respectively, using the flux variance similarity method.This method utilizesthe Monin–Obukhov similarity theory to separate stomatal (photosynthesis and transpiration) from non-stomatal (respiration and evaporation) processes. The results indicate that mulching films contribute to carbon sequestration in the soil (+19.3 g C m−2). However, the mulched watermelon crop presented in this study functions as a net carbon source, with a net biome exchange, representing the net rate of C accumulation in or loss from ecosystems, equal to +230 g C m−2. This is primarily due to the substantial amount of carbon exported through marketable fruits. Fixed water scheduling led to water waste through deep percolation (approximately 1/6 of the water supplied), which also contributed to the loss of organic carbon via leaching (−4.3 g C m−2). These findings recommend further research to enhance the sustainability of this crop in terms of both water and carbon balances.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"36 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-08-04DOI: 10.3390/atmos15080933
Ruo Chai, Weihua Yuan
{"title":"Unique Seasonal Variation in Rainfall Diurnal Features on the Yunnan–Guizhou Plateau","authors":"Ruo Chai, Weihua Yuan","doi":"10.3390/atmos15080933","DOIUrl":"https://doi.org/10.3390/atmos15080933","url":null,"abstract":"Based on hourly precipitation observations, the diurnal variation in precipitation and its seasonal evolution over the Yunnan–Guizhou Plateau (YGP) were analyzed. The results indicate that the seasonal variation in hourly rainfall in the western part of the YGP is unique. The rainfall reaches its hourly maximum during the late afternoon in spring (March–April) and during nighttime in summer (July–August), which contrasts with the pattern in most of eastern China. By further classifying the rainfall into short-duration (1–3 h) and long-duration (more than 6 h) events, the unique seasonal variations in the western YGP are found to mainly be comprised of short-duration rainfall. The long-duration rainfall shares similar diurnal peaks year-round for both the western and eastern parts of the YGP. The short-duration rainfall in the western part of the YGP shows a year-round afternoon peak, which is different from that of the eastern YGP, which peaks from midnight to early morning in spring and in the late afternoon in summer. The surface maximum daily temperature and low-level instabilities reach their annual maximum in spring over the western YGP and are also higher than in other parts of the YGP, together providing favorable conditions for convection to be triggered in spring afternoons over the western YGP.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"18 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Variations in the Thermal Low-Pressure Location Index over the Qinghai–Tibet Plateau and Its Relationship with Summer Precipitation in China","authors":"Qingxia Xie, Mingfei Zhou, Yulei Zhu, Hongzhong Tang, Dongpo He, Jing Yang, Qingbing Pang","doi":"10.3390/atmos15080931","DOIUrl":"https://doi.org/10.3390/atmos15080931","url":null,"abstract":"The thermal and dynamic effects of the special topography of the Qinghai–Tibet Plateau have a significant impact on rainfall in China. Utilizing NCEP/NCAR monthly reanalysis data alongside precipitation observations from 1936 monitoring stations across China spanning from 1966 to 2022, this study establishes a location index for the thermal low-pressure center situated over the Qinghai–Tibet Plateau. Temporal variations in the location index and summer (July) precipitation patterns in China were studied. Over the past six decades, thermal low-pressure centers have been predominantly positioned near 90° E and 32.5° N within a geopotential height of 4360 gpm, with their distribution extending from east to west rather than from south to north. The longitudinal and latitudinal position indices showed the same linear trend, with a negative trend before the 21st century, and then began to turn positive. Mutation analysis highlights pronounced weakening mutations occurring in 1981 and 1973, with the longitudinal index transitioning from an interannual cycle of approximately 6–8 years, while the latitudinal index displays quasi-cyclic oscillations of 5 and 8 and 12–14 years. Strong negative correlations are evident between the location indices and precipitation along the southeastern edge of the Qinghai–Tibet Plateau and in southern China, contrasting with the positive correlations observed in the central-eastern plateau, northwest, north, and the Huang-Huai region of China. The center of the thermal low is located to the east and north, corresponding to the deeper surface thermal low in most areas east of China, and the stronger transport of warm and wet air from the southwest wind, leading to greater convergence of southwest wind and northwest wind in China’s northern region. The south of the Yangtze River is controlled by the strengthening West Pacific subtropical high and South Asia high, resulting in a significant decrease in precipitation, and the warm and humid air from the southwest on the west side of the West Pacific subtropical high is also transported to the north, increasing the precipitation in most parts of the north.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"25 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Precipitable Water Vapor, Liquid Water Path and Their Variations before Rainfall Event over Northeastern Tibetan Plateau","authors":"Mingxing Xue, Qiong Li, Zhen Qiao, Xiaomei Zhu, Suonam Kealdrup Tysa","doi":"10.3390/atmos15080934","DOIUrl":"https://doi.org/10.3390/atmos15080934","url":null,"abstract":"A ground-based microwave radiometer (MWR) provides continuous atmospheric profiles under various weather conditions. The change in total precipitable water vapor (PWV) and liquid water path (LWP) before rainfall events is particularly important for the improvement in the rainfall forecast. However, the analysis of the PWV and LWP before rainfall event on the plateau is especially worth exploring. In this study, the MWR installed at Xining, a city located over the northeastern Tibetan Plateau, was employed during September 2021 to August 2022. The results reveal that the MWR-retrieved temperature and vapor density demonstrate reliable accuracy, when compared with radiosonde observations; PWV and LWP values during the summer account for over 70% of the annual totals in the Xining area; both PWV and LWP at the initiating time of rainfall events are higher during summer, especially after sunset (during 20-00 local solar time); and notably, PWV and LWP anomalies are enhanced abruptly 8 and 28 min prior to the initiating time, respectively. Furthermore, the mean of LWP anomaly rises after the turning time (the moment rises abruptly) to the initiating time; as the intensity of rainfall events increases, the occurrence of the turning time is delayed, especially for PWV anomalies; while the occurrence of the turning time is similar for both convective cloud and stratiform cloud rainfall events, the PWV and LWP anomalies jump more the initiating time; as the intensity of rainfall events increases, the occurrence of the turning time is delayed, especially for PWV anomalies; while the occurrence of the turning time is similar for both convective cloud and stratiform cloud rainfall events, the PWV and LWP anomalies jump more dramatically after the turning time in convective cloud events. This study aims are to analyze the temporal characteristics of PWV and LWP, and assess their potential in predicting rainfall event.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"10 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-08-03DOI: 10.3390/atmos15080928
Jia Wang, Qin Mei, Haixia Mei, Jun Guo, Tongchang Liu
{"title":"Evaluation of the Forecasting Performance of Supercooled Clouds for the Weather Modification Model of the Cloud and Precipitation Explicit Forecasting System","authors":"Jia Wang, Qin Mei, Haixia Mei, Jun Guo, Tongchang Liu","doi":"10.3390/atmos15080928","DOIUrl":"https://doi.org/10.3390/atmos15080928","url":null,"abstract":"Through the application of cloud top temperature data and the extraction of supercooled cloud information in cloud-type data from the next-generation Himawari-8 geostationary satellite with high spatial–temporal resolution, a quantitative evaluation of the forecasting performance of the weather modification model named the Cloud and Precipitation Explicit Forecasting System (CPEFS) was conducted. The evaluation, based on selected forecast cases from 8 days in September and October 2018 initialized at 00 and 12 UTC every day, focused especially on the forecasting performance in supercooled clouds (vertical integrated supercooled liquid water, VISL > 0), including the comprehensive spatial distribution of cloud top temperature (CTT) and 3 h precipitation over 0.1 mm (R3 > 0.1). The results indicated that the forecasting performance for VISL > 0 was relatively good, with the Threat Score (TS) ranging from 0.46 to 0.67. The forecasts initialized at 12 UTC slightly outperformed the forecasts initialized at 00 UTC. Additionally, the corresponding spatial Anomaly Correlation Coefficient (ACC) of CTT between forecasts and observations was 0.23, and the TS for R3 > 0.1 reached as high as 0.87. For a mix of cold and warm cloud systems, there was a correlation between the forecasting performance of VISL > 0 and CTT. The trends in the TS for VISL > 0 and the ACC of CTT aligned with the forecast lead-time.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"2672 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-08-03DOI: 10.3390/atmos15080927
Soo-Yong Lee, Sang-Hun Lim, Hee-Seok Kim
{"title":"Assessing the Radon Exposure Variability and Lifetime Health Effects across Indoor Microenvironments and Sub-Populations","authors":"Soo-Yong Lee, Sang-Hun Lim, Hee-Seok Kim","doi":"10.3390/atmos15080927","DOIUrl":"https://doi.org/10.3390/atmos15080927","url":null,"abstract":"To assess the health impacts of radon exposure over a lifetime, in the present study, the annual effective dose (AED) and cumulative excess lifetime cancer risk (ELCR-C) were evaluated by considering various indoor microenvironmental exposures based on age-specific time–activity patterns using Monte Carlo simulations. Significant regional variations in indoor radon concentrations across the Republic of Korea were observed, with the highest levels found in schools and single detached houses. Based on the standard annual total of 8760 h spent indoors and outdoors, the AED varied by age group and dwelling type, with the ELCR-C for single detached houses being approximately 1.36 times higher than that for apartments on average. The present study highlights the importance of comprehensive health risk assessments that consider differences across indoor environments and age groups, indicating that limited evaluations of specific sites or areas may distort actual exposure levels.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"20 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}