AtmospherePub Date : 2024-09-05DOI: 10.3390/atmos15091071
Fangyun Long, Yanqin Ren, Yuanyuan Ji, Junling Li, Haijie Zhang, Zhenhai Wu, Rui Gao, Fang Bi, Zhengyang Liu, Hong Li
{"title":"Pollution Characteristics, Toxicological Properties, and Health Risk Assessment of Phthalic Acid Esters in Water, Soil, and Atmosphere","authors":"Fangyun Long, Yanqin Ren, Yuanyuan Ji, Junling Li, Haijie Zhang, Zhenhai Wu, Rui Gao, Fang Bi, Zhengyang Liu, Hong Li","doi":"10.3390/atmos15091071","DOIUrl":"https://doi.org/10.3390/atmos15091071","url":null,"abstract":"Phthalic acid esters (PAEs) are a class of common environmental endocrine disruptors (EEDs), capable of causing considerable pollution to water, soil, and air and producing a range of adverse health impacts in humans. Although various studies have investigated the pollution characteristics and health hazards of PAEs in different media, a systematic review of PAEs in the broader environmental context is still lacking. In order to comprehensively explore current issues and suggest prospects, the current status, detection technology, toxicity, and health hazards of PAEs were investigated. The results suggest that PAE pollution is a widespread and complex global phenomenon, transported over long distances. The traditional techniques used for determination include high-performance liquid chromatography–mass spectrometry (HPLC-MS), gas chromatography–mass spectrometry (GC-MS), and high-performance liquid chromatography (HPLC). Various detection techniques offer distinct advantages and disadvantages. Moreover, PAEs can cause differing extents of harm to the nervous and reproductive systems of mammals. In the future, it is imperative to improve the detection of PAEs, establish rapid identification approaches, refine toxicological research methods, and investigate more comprehensive health risk assessment methods. These efforts will provide scientific support for the prevention and management of the resulting contaminants.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"23 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-09-05DOI: 10.3390/atmos15091073
Helen Mavromichalaki, Maria Livada, Argyris Stassinakis, Maria Gerontidou, Maria-Christina Papailiou, Line Drube, Aikaterini Karmi
{"title":"The ap Prediction Tool Implemented by the A.Ne.Mo.S./NKUA Group","authors":"Helen Mavromichalaki, Maria Livada, Argyris Stassinakis, Maria Gerontidou, Maria-Christina Papailiou, Line Drube, Aikaterini Karmi","doi":"10.3390/atmos15091073","DOIUrl":"https://doi.org/10.3390/atmos15091073","url":null,"abstract":"A novel tool utilizing machine learning techniques was designed to forecast ap index values for the next three consecutive days (24 values). The tool employs time series data from the 3 h ap index of solar cycles 23 and 24 to train the Long Short-Term Memory (LSTM) model, predicting ap index values for the next 72 h at three-hour intervals. During periods of quiet geomagnetic activity, the LSTM model’s performance is sufficient to yield favorable outcomes. Nevertheless, during geomagnetically disturbed conditions, such as geomagnetic storms of different levels, the model needs to be adapted in order to provide accurate ap index results. In particular, when coronal mass ejections occur, the ap Prediction tool is modulated by inserting predominant features of coronal mass ejections such as the date of the event, the estimated time of arrival and the linear speed. In the present work, this tool is described thoroughly; moreover, results for G2 and G3 geomagnetic storms are presented.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"35 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-09-05DOI: 10.3390/atmos15091072
Ryan W. Hirst, Myra J. Giesen, Maria-Valasia Peppa, Kelly Jobling, Dnyaneshwari Jadhav, S. Ziauddin Ahammad, Anil Namdeo, David W. Graham
{"title":"Modeling of Air Quality near Indian Informal Settlements Where Limited Local Monitoring Data Exist","authors":"Ryan W. Hirst, Myra J. Giesen, Maria-Valasia Peppa, Kelly Jobling, Dnyaneshwari Jadhav, S. Ziauddin Ahammad, Anil Namdeo, David W. Graham","doi":"10.3390/atmos15091072","DOIUrl":"https://doi.org/10.3390/atmos15091072","url":null,"abstract":"The world is becoming increasingly urbanized, with migration rates often exceeding the infra-structural capacity in cities across the developing world. As such, many migrants must reside in informal settlements that lack civil and health protection infrastructure, including air quality monitoring. Here, geospatial inverse distance weighting and archived Central Pollution Control Board (CPCB) air quality data for neighboring stations from 2018 to 2021 were used to estimate air conditions in five informal settlements in Delhi, India, spanning the 2020 pandemic lockdown. The results showed that WHO limits for PM2.5 and NO2 were exceeded regularly, although air quality improved during the pandemic. Air quality was always better during the monsoon season (44.3 ± 3.47 and 26.9 ± 2.35 μg/m3 for PM2.5 and NO2, respectively) and poorest in the post-monsoon season (180 ± 15.5 and 55.2 ± 3.59 μg/m3 for PM2.5 and NO2). Differences in air quality among settlements were explained by the proximity to major roads and places of open burning, with NO2 levels often being greater near roads and PM2.5 levels being elevated near places with open burning. Field monitoring was performed in 2023 at three settlements and local CPCB stations. Air quality at settlements and their closest station were not significantly different (p < 0.01). However, field data showed that on-site factors within settlements, such as cooking, ad hoc burning, or micro-scale industry, impact air quality on local scales, suggesting health risks are greater in informal settlements because of greater unregulated activity. City-scale models can estimate mean air quality concentrations at unmonitored locations, but caution is needed because such models can miss local exposures that may have the greatest impact on local health.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"30 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-09-05DOI: 10.3390/atmos15091076
Christine Kolbe, Boris Thies, Jörg Bendix
{"title":"Let It Snow: Intercomparison of Various Total and Snow Precipitation Data over the Tibetan Plateau","authors":"Christine Kolbe, Boris Thies, Jörg Bendix","doi":"10.3390/atmos15091076","DOIUrl":"https://doi.org/10.3390/atmos15091076","url":null,"abstract":"The Global Precipitation Measurement Mission (GPM) improved spaceborne precipitation data. The GPM dual-frequency precipitation radar (DPR) provides information on total precipitation (TP), snowfall precipitation (SF) and snowfall flags (surface snowfall flag (SSF) and phase near surface (PNS)), among other variables. Especially snowfall data were hardly validated. This study compares GPM DPR TP, SF and snowfall flags on the Tibetan Plateau (TiP) against TP and SF from six well-known model-based data sets used as ground truth: ERA 5, ERA 5 land, ERA Interim, MERRA 2, JRA 55 and HAR V2. The reanalysis data were checked for consistency. The results show overall high agreement in the cross-correlation with each other. The reanalysis data were compared to the GPM DPR snowfall flags, TP and SF. The intercomparison performs poorly for the GPM DPR snowfall flags (HSS = 0.06 for TP, HSS = 0.23 for SF), TP (HSS = 0.13) and SF (HSS = 0.31). Some studies proved temporal or spatial mismatches between spaceborne measurements and other data. We tested whether increasing the time lag of the reanalysis data (+/−three hours) or including the GPM DPR neighbor pixels (3 × 3 pixel window) improves the results. The intercomparison with the GPM DPR snowfall flags using the temporal adjustment improved the results significantly (HSS = 0.21 for TP, HSS = 0.41 for SF), whereas the spatial adjustment resulted only in small improvements (HSS = 0.12 for TP, HSS = 0.29 for SF). The intercomparison of the GPM DPR TP and SF was improved by temporal (HSS = 0.3 for TP, HSS = 0.48 for SF) and spatial adjustment (HSS = 0.35 for TP, HSS = 0.59 for SF).","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"14 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-09-05DOI: 10.3390/atmos15091074
Konstantinos Dimitriou, Nikolaos Mihalopoulos
{"title":"Air Quality Assessment in Six Major Greek Cities with an Emphasis on the Athens Metropolitan Region","authors":"Konstantinos Dimitriou, Nikolaos Mihalopoulos","doi":"10.3390/atmos15091074","DOIUrl":"https://doi.org/10.3390/atmos15091074","url":null,"abstract":"To assess the impact of air pollution on human health in multiple urban areas in Greece, hourly concentrations of common air pollutants (CO, NO2, O3, SO2, PM10, and PM2.5) from 11 monitoring stations in six major Greek cities (Athens, Thessaloniki, Patra, Volos, Ioannina, and Kozani), were used to implement the U.S. EPA’s Air Quality Index (AQI) during a seven-year period (2016–2022). In Athens, the capital city of Greece, hourly PM10 and PM2.5 concentrations were also studied in relation to the prevailing wind patterns, while major PM10 episodes exceeding the official daily EU limit (50 μg/m3) were analyzed using the Potential Source Contribution Function (PSCF) in terms of the air mass origin. According to the AQI results, PM10 and PM2.5 were by far the most hazardous pollutants associated with moderate and unhealthy conditions in all the studied areas. In addition, in Athens, Thessaloniki, and Patra, where the benzene levels were also studied, a potential inhalation cancer risk (>1.0 × 10−6) was detected. In Athens, Saharan dust intrusions were associated with downgraded air quality, whilst regional transport and the accumulation of local emissions triggered increased PM10 and PM2.5 levels in traffic sites, especially during cold periods. Our study highlights the need for the development of early warning systems and emission abatement strategies for PM pollution in Greece.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"48 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-09-04DOI: 10.3390/atmos15091068
Gervásio Annes Degrazia, Felipe Denardin Costa, Luís Gustavo Nogueira Martins, Luis Fernando Camponogara, Michel Stefanello, Cinara Ewerling da Rosa, Tiziano Tirabassi
{"title":"Investigating the Turbulent Vertical Dispersion in a Strong Shear Dominated Neutral Atmospheric Boundary Layer","authors":"Gervásio Annes Degrazia, Felipe Denardin Costa, Luís Gustavo Nogueira Martins, Luis Fernando Camponogara, Michel Stefanello, Cinara Ewerling da Rosa, Tiziano Tirabassi","doi":"10.3390/atmos15091068","DOIUrl":"https://doi.org/10.3390/atmos15091068","url":null,"abstract":"The primary focus of this article is to derive a solution to obtain the asymptotic turbulent dispersion parameter provided by the spectral Taylor statistical diffusion model. Unlike previous articles, which employed the Dirac delta function to solve the eddy diffusivity formula, in this study, we used the Dirac delta function properties to obtain directly the asymptotic turbulent dispersion parameter from the particles’ spatial dispersion variance described in terms of the Eulerian turbulence spectrum and of the scale factor defined formally as the ratio between Lagrangian and Eulerian timescales. From the Kolmogorov 1941 theory, a detailed derivation for this scale factor is presented. Furthermore, using high mean wind speed data generated by local topographic features, a magnitude for the Kolmogorov constant for the neutral atmospheric boundary layer is evaluated. Thus, this magnitude when added to other values obtained from the selected studies found in the literature provides an average value for the Kolmogorov constant that agrees with large eddy simulation data results. Therefore, this average value allows to obtain a more reliable description of this scale factor. Finally, employing analytical formulations for the observed neutral turbulent spectra and for the velocity variances as well as turbulent statistical quantities measured in a surface neutral atmospheric boundary layer, a vertical dispersion parameter is derived. This vertical dispersion parameter when utilized in a simple Gaussian diffusion model is able to reproduce well contaminant observed concentrations.The Gaussian simulated concentrations also compare well with those simulated by a Lagrangian stochastic particle dispersion model that uses observed vertical spectral peak frequency values at distinct levels of the neutral surface boundary layer. Therefore, the present study shows that the observational determination of a single vertical spectral peak frequency is sufficient to obtain a realistic vertical dispersion parameter characterizing the dispersive effect in the turbulent environment of the surface neutral atmospheric boundary layer.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"9 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-09-04DOI: 10.3390/atmos15091070
Da-Som Park, Yongjoo Choi, Young Sunwoo, Chang Hoon Jung
{"title":"Development of Wet Scavenging Process of Particles in Air Quality Modeling","authors":"Da-Som Park, Yongjoo Choi, Young Sunwoo, Chang Hoon Jung","doi":"10.3390/atmos15091070","DOIUrl":"https://doi.org/10.3390/atmos15091070","url":null,"abstract":"This study presents an improved wet scavenging process for particles in air quality modeling, focusing on the Korean Peninsula. New equations were incorporated into the air quality chemical transport model (CTM) to enhance the simulation of particulate matter (PM) concentrations. The modified air quality CTM module, utilizing size-dependent scavenging formulas, was applied to simulate air quality for April 2018, a month characterized by significant precipitation. Results showed that the modified model produced more accurate predictions of PM10 and PM2.5 concentrations compared to the original air quality CTM model. The maximum monthly average differences were 5.46 µg/m3 for PM10 and 2.87 µg/m3 for PM2.5, with pronounced improvements in high-concentration regions. Time-series analyses for Seoul and Busan demonstrated better agreement between modeled and observed values. Spatial distribution comparisons revealed enhanced accuracy, particularly in metropolitan areas. This study highlights the importance of incorporating region-specific, size-dependent wet scavenging processes in air quality models. The improved model shows promise for more accurate air quality predictions, potentially benefiting environmental management and policy-making in the region. Future research should focus on integrating more empirical data to further refine the wet scavenging process in air quality modeling.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"76 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on Short-Term Forecasting Model of Global Atmospheric Temperature and Wind in the near Space Based on Deep Learning","authors":"Xingxin Sun, Chen Zhou, Jian Feng, Huiyun Yang, Yuqiang Zhang, Zhou Chen, Tong Xu, Zhongxin Deng, Zhengyu Zhao, Yi Liu, Ting Lan","doi":"10.3390/atmos15091069","DOIUrl":"https://doi.org/10.3390/atmos15091069","url":null,"abstract":"Developing short-term forecasting models for global atmospheric temperature and wind in near space is crucial for understanding atmospheric dynamics and supporting human activities in this region. While numerical models have been extensively developed, deep learning techniques have recently shown promise in improving atmospheric forecasting accuracy. In this study, convolutional long short-term memory (ConvLSTM) and convolutional gated recurrent unit (ConvGRU) neural networks were applied to build for short-term global-scale forecasting model of atmospheric temperature and wind in near space based on the MERRA-2 reanalysis dataset from 2010–2022. The model results showed that the ConvGRU model outperforms the ConvLSTM model in the short-term forecast results. The ConvGRU model achieved a root mean square error in the first three hours of approximately 1.8 K for temperature predictions, and errors of 4.2 m/s and 3.8 m/s for eastward and northward wind predictions on all 72 isobaric surfaces. Specifically, at a higher altitude (on the 1.65 Pa isobaric surface, approximately 70 km above sea level), the ConvGRU model achieved a RMSE of about 2.85 K for temperature predictions, and 5.67 m/s and 5.17 m/s for eastward and northward wind. This finding is significantly meaningful for short-term temperature and wind forecasts in near space and for exploring the physical mechanisms related to temperature and wind variations in this region.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"30 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-09-03DOI: 10.3390/atmos15091063
Jiayu Wu, Yao Li, Xudong Zhang, Huanjie Cai
{"title":"Spatiotemporal Variation Patterns of Drought in Liaoning Province, China, Based on Copula Theory","authors":"Jiayu Wu, Yao Li, Xudong Zhang, Huanjie Cai","doi":"10.3390/atmos15091063","DOIUrl":"https://doi.org/10.3390/atmos15091063","url":null,"abstract":"Liaoning Province, a crucial agricultural region in Northeast China, has endured frequent drought disasters in recent years, significantly affecting both agricultural production and the ecological environment. Conducting drought research is of paramount importance for formulating scientific drought monitoring and prevention strategies, ensuring agricultural production and ecological safety. This study developed a Comprehensive Joint Drought Index (CJDI) using the empirical Copula function to systematically analyze drought events in Liaoning Province from 1981 to 2020. Through the application of MK trend tests, Morlet wavelet analysis, and run theory, the spatiotemporal variation patterns and recurrence characteristics of drought in Liaoning Province were thoroughly investigated. The results show that, compared to the three classic drought indices, Standardized Precipitation Index (SPI), Evaporative Demand Drought Index (EDDI), and Standardized Precipitation Evapotranspiration Index (SPEI), CJDI has the highest accuracy in monitoring actual drought events. From 1981 to 2020, drought intensity in all regions of Liaoning Province (east, west, south, and north) exhibited an upward trend, with the western region experiencing the most significant increase, as evidenced by an MK test Z-value of −4.53. Drought events in Liaoning Province show clear seasonality, with the most significant periodic fluctuations in spring (main cycles of 5–20 years, longer cycles of 40–57 years), while the frequency and variability of drought events in autumn and winter are lower. Mild droughts frequently occur in Liaoning Province, with joint and co-occurrence recurrence periods ranging from 1.0 to 1.8 years. Moderate droughts have shorter joint recurrence periods in the eastern region (1.2–1.4 years) and longer in the western and southern regions (1.4–2.2 years), with the longest co-occurrence recurrence period in the southern region (3.0–4.0 years). Severe and extreme droughts are less frequent in Liaoning Province. This study provides a scientific foundation for drought monitoring and prevention in Liaoning Province and serves as a valuable reference for developing agricultural production strategies to adapt to climate change.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"74 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AtmospherePub Date : 2024-09-03DOI: 10.3390/atmos15091065
Iurii Cherniak, Irina Zakharenkova, Scott Gleason, Douglas Hunt
{"title":"First Detections of Ionospheric Plasma Density Irregularities from GOES Geostationary GPS Observations during Geomagnetic Storms","authors":"Iurii Cherniak, Irina Zakharenkova, Scott Gleason, Douglas Hunt","doi":"10.3390/atmos15091065","DOIUrl":"https://doi.org/10.3390/atmos15091065","url":null,"abstract":"In this study, we present the first results of detecting ionospheric irregularities using non-typical GPS observations recorded onboard the Geostationary Operational Environmental Satellites (GOES) mission operating at ~35,800 km altitude. Sitting above the GPS constellation, GOES can track GPS signals only from GPS transmitters on the opposite side of the Earth in a rather unique geometry. Although GPS receivers onboard GOES are primarily designed for navigation and were not configured for ionospheric soundings, these GPS measurements along links that traverse the Earth’s ionosphere can be used to retrieve information about ionospheric electron density. Using the radio occultation (RO) technique applied to GPS measurements from the GOES–16, we analyzed variations in the ionospheric total electron content (TEC) on the links between the GPS transmitter and geostationary GOES GPS receiver. For case-studies of major geomagnetic storms that occurred in September 2017 and August 2018, we detected and analyzed the signatures of storm-induced ionospheric irregularities in novel and promising geostationary GOES GPS observations. We demonstrated that the presence of ionospheric irregularities near the GOES GPS RO sounding field of view during geomagnetic disturbances was confirmed by ground-based GNSS observations. The use of RO observations from geostationary orbit provides new opportunities for monitoring ionospheric irregularities and ionospheric density.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"23 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}