{"title":"基于 Copula 理论的中国辽宁省干旱时空变化规律","authors":"Jiayu Wu, Yao Li, Xudong Zhang, Huanjie Cai","doi":"10.3390/atmos15091063","DOIUrl":null,"url":null,"abstract":"Liaoning Province, a crucial agricultural region in Northeast China, has endured frequent drought disasters in recent years, significantly affecting both agricultural production and the ecological environment. Conducting drought research is of paramount importance for formulating scientific drought monitoring and prevention strategies, ensuring agricultural production and ecological safety. This study developed a Comprehensive Joint Drought Index (CJDI) using the empirical Copula function to systematically analyze drought events in Liaoning Province from 1981 to 2020. Through the application of MK trend tests, Morlet wavelet analysis, and run theory, the spatiotemporal variation patterns and recurrence characteristics of drought in Liaoning Province were thoroughly investigated. The results show that, compared to the three classic drought indices, Standardized Precipitation Index (SPI), Evaporative Demand Drought Index (EDDI), and Standardized Precipitation Evapotranspiration Index (SPEI), CJDI has the highest accuracy in monitoring actual drought events. From 1981 to 2020, drought intensity in all regions of Liaoning Province (east, west, south, and north) exhibited an upward trend, with the western region experiencing the most significant increase, as evidenced by an MK test Z-value of −4.53. Drought events in Liaoning Province show clear seasonality, with the most significant periodic fluctuations in spring (main cycles of 5–20 years, longer cycles of 40–57 years), while the frequency and variability of drought events in autumn and winter are lower. Mild droughts frequently occur in Liaoning Province, with joint and co-occurrence recurrence periods ranging from 1.0 to 1.8 years. Moderate droughts have shorter joint recurrence periods in the eastern region (1.2–1.4 years) and longer in the western and southern regions (1.4–2.2 years), with the longest co-occurrence recurrence period in the southern region (3.0–4.0 years). Severe and extreme droughts are less frequent in Liaoning Province. This study provides a scientific foundation for drought monitoring and prevention in Liaoning Province and serves as a valuable reference for developing agricultural production strategies to adapt to climate change.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"74 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal Variation Patterns of Drought in Liaoning Province, China, Based on Copula Theory\",\"authors\":\"Jiayu Wu, Yao Li, Xudong Zhang, Huanjie Cai\",\"doi\":\"10.3390/atmos15091063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liaoning Province, a crucial agricultural region in Northeast China, has endured frequent drought disasters in recent years, significantly affecting both agricultural production and the ecological environment. Conducting drought research is of paramount importance for formulating scientific drought monitoring and prevention strategies, ensuring agricultural production and ecological safety. This study developed a Comprehensive Joint Drought Index (CJDI) using the empirical Copula function to systematically analyze drought events in Liaoning Province from 1981 to 2020. Through the application of MK trend tests, Morlet wavelet analysis, and run theory, the spatiotemporal variation patterns and recurrence characteristics of drought in Liaoning Province were thoroughly investigated. The results show that, compared to the three classic drought indices, Standardized Precipitation Index (SPI), Evaporative Demand Drought Index (EDDI), and Standardized Precipitation Evapotranspiration Index (SPEI), CJDI has the highest accuracy in monitoring actual drought events. From 1981 to 2020, drought intensity in all regions of Liaoning Province (east, west, south, and north) exhibited an upward trend, with the western region experiencing the most significant increase, as evidenced by an MK test Z-value of −4.53. Drought events in Liaoning Province show clear seasonality, with the most significant periodic fluctuations in spring (main cycles of 5–20 years, longer cycles of 40–57 years), while the frequency and variability of drought events in autumn and winter are lower. Mild droughts frequently occur in Liaoning Province, with joint and co-occurrence recurrence periods ranging from 1.0 to 1.8 years. Moderate droughts have shorter joint recurrence periods in the eastern region (1.2–1.4 years) and longer in the western and southern regions (1.4–2.2 years), with the longest co-occurrence recurrence period in the southern region (3.0–4.0 years). Severe and extreme droughts are less frequent in Liaoning Province. This study provides a scientific foundation for drought monitoring and prevention in Liaoning Province and serves as a valuable reference for developing agricultural production strategies to adapt to climate change.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15091063\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091063","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Spatiotemporal Variation Patterns of Drought in Liaoning Province, China, Based on Copula Theory
Liaoning Province, a crucial agricultural region in Northeast China, has endured frequent drought disasters in recent years, significantly affecting both agricultural production and the ecological environment. Conducting drought research is of paramount importance for formulating scientific drought monitoring and prevention strategies, ensuring agricultural production and ecological safety. This study developed a Comprehensive Joint Drought Index (CJDI) using the empirical Copula function to systematically analyze drought events in Liaoning Province from 1981 to 2020. Through the application of MK trend tests, Morlet wavelet analysis, and run theory, the spatiotemporal variation patterns and recurrence characteristics of drought in Liaoning Province were thoroughly investigated. The results show that, compared to the three classic drought indices, Standardized Precipitation Index (SPI), Evaporative Demand Drought Index (EDDI), and Standardized Precipitation Evapotranspiration Index (SPEI), CJDI has the highest accuracy in monitoring actual drought events. From 1981 to 2020, drought intensity in all regions of Liaoning Province (east, west, south, and north) exhibited an upward trend, with the western region experiencing the most significant increase, as evidenced by an MK test Z-value of −4.53. Drought events in Liaoning Province show clear seasonality, with the most significant periodic fluctuations in spring (main cycles of 5–20 years, longer cycles of 40–57 years), while the frequency and variability of drought events in autumn and winter are lower. Mild droughts frequently occur in Liaoning Province, with joint and co-occurrence recurrence periods ranging from 1.0 to 1.8 years. Moderate droughts have shorter joint recurrence periods in the eastern region (1.2–1.4 years) and longer in the western and southern regions (1.4–2.2 years), with the longest co-occurrence recurrence period in the southern region (3.0–4.0 years). Severe and extreme droughts are less frequent in Liaoning Province. This study provides a scientific foundation for drought monitoring and prevention in Liaoning Province and serves as a valuable reference for developing agricultural production strategies to adapt to climate change.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.