Giannis Ioannidis, Paul Tremper, Chaofan Li, Till Riedel, Nikolaos Rapkos, Christos Boikos, Leonidas Ntziachristos
{"title":"Integrating Cost-Effective Measurements and CFD Modeling for Accurate Air Quality Assessment","authors":"Giannis Ioannidis, Paul Tremper, Chaofan Li, Till Riedel, Nikolaos Rapkos, Christos Boikos, Leonidas Ntziachristos","doi":"10.3390/atmos15091056","DOIUrl":null,"url":null,"abstract":"Assessing air quality in urban areas is vital for protecting public health, and low-cost sensor networks help quantify the population’s exposure to harmful pollutants effectively. This paper introduces an innovative method to calibrate air-quality sensor networks by combining CFD modeling with dependable AQ measurements. The developed CFD model is used to simulate traffic-related PM10 dispersion in a 1.6 × 2 km2 urban area. Hourly simulations are conducted, and the resulting concentrations are cross-validated against high-quality measurements. By offering detailed 3D information at a micro-scale, the CFD model enables the creation of concentration maps at sensor locations. Through regression analysis, relationships between low-cost sensor (LCS) readings and modeled outcomes are established and used for network calibration. The study demonstrates the methodology’s capability to provide aid to low-cost devices during a representative 24 h period. The precision of a CFD model can also guide optimal sensor placement based on prevailing meteorological and emission scenarios and refine existing networks for more accurate urban air quality representation. The usage of cost-effective air quality networks, high-quality monitoring stations, and high-resolution air quality modeling combines the strengths of both top-down and bottom-up approaches for air quality assessment. Therefore, the work demonstrated plays a significant role in providing reliable pollutant monitoring and supporting the assessment of environmental policies, aiming to address health issues related to urban air pollution.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"42 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091056","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Assessing air quality in urban areas is vital for protecting public health, and low-cost sensor networks help quantify the population’s exposure to harmful pollutants effectively. This paper introduces an innovative method to calibrate air-quality sensor networks by combining CFD modeling with dependable AQ measurements. The developed CFD model is used to simulate traffic-related PM10 dispersion in a 1.6 × 2 km2 urban area. Hourly simulations are conducted, and the resulting concentrations are cross-validated against high-quality measurements. By offering detailed 3D information at a micro-scale, the CFD model enables the creation of concentration maps at sensor locations. Through regression analysis, relationships between low-cost sensor (LCS) readings and modeled outcomes are established and used for network calibration. The study demonstrates the methodology’s capability to provide aid to low-cost devices during a representative 24 h period. The precision of a CFD model can also guide optimal sensor placement based on prevailing meteorological and emission scenarios and refine existing networks for more accurate urban air quality representation. The usage of cost-effective air quality networks, high-quality monitoring stations, and high-resolution air quality modeling combines the strengths of both top-down and bottom-up approaches for air quality assessment. Therefore, the work demonstrated plays a significant role in providing reliable pollutant monitoring and supporting the assessment of environmental policies, aiming to address health issues related to urban air pollution.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.