{"title":"Development of Rice Paddy Model Based on Noah LSM: Consistent Parameterization of Subcanopy Resistance from the Ponded Water to Dense Rice Canopy","authors":"Hee-Jeong Lim, Young-Hee Lee","doi":"10.1007/s13143-024-00375-3","DOIUrl":"10.1007/s13143-024-00375-3","url":null,"abstract":"<div><p>We developed a rice paddy model based on Noah land surface model (LSM) considering the standing water layer during the irrigation periods. In the model, we adopted a consistent subcanopy process from thin to thick canopy conditions and considered a small scalar roughness length of the water surface in the rice paddy fields. We evaluated the performance of the model using observations from three rice paddy sites with different leaf area index and water depth in Japan during the growing season. Two simulations were performed in an offline mode: a Noah LSM simulation with saturated soil moisture in the top two soil layers (IRRI) and a rice paddy model simulation (RICE). The average root mean squared errors of ground, sensible, and latent heat fluxes, and first soil layer temperature decreased by 20%, 16%, 17%, and 31%, respectively in the RICE simulation, compared to the IRRI simulation. The better performance of the RICE simulation was attributed to the consideration of the heat storage of the standing water layer during the irrigation periods and the realistic energy partitioning by the single-canopy model during the non-irrigation periods. Two sensitivity tests were performed related to the roughness length of the water and the constant mean water depth. When the small roughness length of the water surface during the irrigation periods was not considered, the subcanopy resistance decreased, which resulted in a cold bias in the daily mean ground and soil temperature and an overestimation of the daily mean latent heat flux under low leaf area index conditions. The use of constant mean water depth in the model did not significantly change simulated surface fluxes and ground and first soil layer temperature, implying that detailed information on temporally changing water depth is less important in the simulation.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"693 - 707"},"PeriodicalIF":2.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential Precursory Signals of Localized Torrential Rainfall From Geostationary Satellite and Radar Observations: A Case Study of the 2022 Seoul Flood","authors":"Gyuyeon Kim, Yong-Sang Choi, Junho Ho","doi":"10.1007/s13143-024-00376-2","DOIUrl":"10.1007/s13143-024-00376-2","url":null,"abstract":"<div><p>The Korean Peninsula frequently experiences localized torrential rainfall (LTR) in the summer. However, on August 8, 2022, a peculiar LTR occurred by the continuous generation of convective clouds within a few hours, numerical weather prediction model was hard to forecast such a high intensity of LTR. This study explores the possibility of uncovering potential precursory signals using remote sensing techniques in both Geostationary Korea Multi-Purpose Satellite 2A (GK2A) and the operational RKSG (Camp Humphreys) Weather Surveillance Radar 88 Doppler (WSR-88D). Using cloud properties from GK2A, cloud top temperature showed a decrease and maintained low values below 220 K 1–1.5 h before the LTR events. However, discerning the exact onset of LTR in already mature stage clouds using only GK2A variables proved challenging. Instead, liquid water content from RKSG sharply increased before the LTR started. Our calculation of the LTR potential from a combination of GK2A and RKSG cloud properties shows a more accurate precursory signal of LTR than from GK2A cloud properties solely or RKSG either. This study highlights the synergistic benefits of combining geostationary satellite and radar observations to understand and predict early precursors of LTR events.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"679 - 692"},"PeriodicalIF":2.2,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00376-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sukyoung Lee, Peter R. Bannon, Mingyu Park, Joseph P. Clark
{"title":"Zonal Contrasts of the Tropical Pacific Climate Predicted by a Global Constraint","authors":"Sukyoung Lee, Peter R. Bannon, Mingyu Park, Joseph P. Clark","doi":"10.1007/s13143-024-00373-5","DOIUrl":"10.1007/s13143-024-00373-5","url":null,"abstract":"<div><p>The zonal gradients in sea surface temperature and convective heating across the tropical Pacific play a pivotal role in setting the weather and climate patterns globally. Under global warming, the current generation of climate models predict that the zonal gradients will decrease, but the trajectory of the observed trends is the opposite. Theories supporting either of the two projections exist, but there are many relevant processes whose net effect is unclear. In this study, a global constraint – the maximum material entropy production (maxMEP) hypothesis—is considered to help close the gap. The climate system considered here is comprised of a one-layer atmosphere and surface in six regions that represent the western tropical Pacific, eastern tropical Pacific, northern and southern midlatitudes, and northern and southern polar regions. The model conserves energy but does not explicitly include dynamics. The model input is observation-based radiative parameters. The radiative effect of greenhouse gas (GHG) loading is mimicked by prescribing increases in the longwave absorptivity <span>(epsilon)</span>. The model solutions predict that zonal contrasts in surface temperature, convective heat flux, and surface pressure increase with increasing <span>(epsilon)</span>. While maxMEP solutions in general cannot provide a definite answer to the problem, these model results strengthen the possibility that the trajectory of the observed trend reflects the response to increasing GHG loading in the atmosphere.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"669 - 678"},"PeriodicalIF":2.2,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00373-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Primary Factors and Synoptic Pattern Classification of Mega Asian Dust Storms in Korea","authors":"Seungyeon Lee, Ji Won Yoon, Seon Ki Park","doi":"10.1007/s13143-024-00374-4","DOIUrl":"10.1007/s13143-024-00374-4","url":null,"abstract":"<div><p>High concentration Asian Dust Storms (ADSs) significantly impact health and economic activities by increasing atmospheric particulate matter. This study aims to understand the mechanisms, migration paths, and activity patterns of ADSs, which are essential for issuing timely warnings and aiding in atmospheric environment research. Using unsupervised learning methods, including the principal component analysis (PCA) and K-means clustering, we analyzed the mega ADS events from 2002 to 2022 based on the ECMWF reanalysis (ERA5) data. We identified key meteorological factors, including geopotential height and temperature at lower levels (800–1000 hPa), and classified synoptic patterns associated to the mega ADSs during the origination stages in the source regions and the peak concentration stages in Korea. Findings highlight that, during the origination stage, enhanced troughs and high temperature at low levels are primary factors affecting atmospheric instability and consequently strong updrafts that lift dust particles, combined with high planetary boundary layer heights, ranging 1400─2950 m, and strong pressure gradients at the source regions. It is further noted that low-level temperature and specific humidity are critical during the peak stages in Korea, with contributions from higher atmospheric levels. Variability in atmospheric conditions among different patterns affects dust concentrations, with certain patterns experiencing sharp declines in humidity leading to peak dust events. Noting also that the mega ADSs occur under specific synoptic patterns classified at both the origination stages and the peak concentration stages in Korea, this comprehensive analysis provides crucial insights into the dynamics and prediction of mega ADSs in Korea.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"655 - 667"},"PeriodicalIF":2.2,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tae-Jun Kim, Jinwon Kim, Jin-Uk Kim, Chu-Yong Chung, Young-Hwa Byun
{"title":"Impacts of Climate Change on Atmospheric Rivers over East Asia","authors":"Tae-Jun Kim, Jinwon Kim, Jin-Uk Kim, Chu-Yong Chung, Young-Hwa Byun","doi":"10.1007/s13143-024-00372-6","DOIUrl":"10.1007/s13143-024-00372-6","url":null,"abstract":"<div><p>Atmospheric rivers (ARs) are closely associated with extreme precipitation and hydrological events in East Asia. Predicting the impacts of climate change on ARs is crucial for preventing the damage caused by extreme precipitation and ensuring the effective operation of water management facilities. We aimed to conduct future projections (2080–2099) of annual and seasonal changes based on the assessment of East Asian AR and AR-related precipitation, using the Coupled Model Intercomparison Project Phase 6 (CMIP6) Multi-model ensemble (MME). The annual average integrated vapor transport (IVT) in East Asia in 2080–2099 will increase by approximately 32.5% compared to 1995–2014. Meanwhile, the annual average AR frequency (F<sub>AR</sub>) will increase by approximately 111%. Examination of the water vapor and moist wind components of the IVT revealed that the future increase in the IVT was primarily from increases in water vapor. The increase in IVT is largely responsible for the increase in AR frequency. Changes in AR following global warming have also affected precipitation, increasing the total precipitation for East Asia. An examination of the changes in AR characteristics shows that the frequency of intense AR events will also increase owing to global warming. Increases in the frequency of strong AR events during the East Asian summer monsoon season are projected to occur. Projections regarding the frequency and intensity of AR events vary substantially by region, such as Korean Peninsula, Southern China and Western Japan.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"639 - 654"},"PeriodicalIF":2.2,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141342974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inseon Park, Seokwon Kang, Kyunghoon Kim, Jihee Ban, Jeongin Song, Chan-Soo Jeon, Taehyun Park, Taehyoung Lee
{"title":"Physicochemical Characteristics and Formation of PM2.5 in Yongin, Korea—A Suburban Metropolitan Area","authors":"Inseon Park, Seokwon Kang, Kyunghoon Kim, Jihee Ban, Jeongin Song, Chan-Soo Jeon, Taehyun Park, Taehyoung Lee","doi":"10.1007/s13143-024-00371-7","DOIUrl":"10.1007/s13143-024-00371-7","url":null,"abstract":"<div><p>This study investigated the physicochemical properties of PM<sub>2.5</sub>, especially among secondary aerosols, based on the particulate matter and gaseous precursors in Yongin, Korea measured between February and June 2022. A comparative analysis of PM composition across two seasons highlighted the atmospheric characteristics of this suburban area. As observed, the average PM<sub>2.5</sub> concentrations in February and March were higher than those in May and June, with NO<sub>3</sub><sup>−</sup> being particularly predominant during the colder months when PM<sub>2.5</sub> levels were elevated. During this period, the high levels of gaseous precursors such as NO<sub>X</sub>, HNO<sub>3</sub>, and NMHC likely contributed to secondary aerosol formation. The intermediate oxidation states of organic matter in Yongin indicate its suburban characteristic, which is intermediate between urban and rural areas. Inorganic aerosols were enriched with (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> with sufficient NH<sub>3</sub> availability, and then the formation of NH<sub>4</sub>NO<sub>3</sub> was promoted through the reaction of the same phase (gas–gas) HNO<sub>3</sub> with NH<sub>3</sub>. Additionally, the temperature variations influenced the PM<sub>2.5</sub> composition, promoting the production of NH<sub>4</sub>NO<sub>3</sub> in February–March. In Yongin, HNO<sub>3</sub> acted as a limiting factor in NH<sub>4</sub>NO<sub>3</sub> production. Thus, the management of precursor gases such as HNO<sub>3</sub> and NO<sub>2</sub> is crucial during periods of high PM<sub>2.5</sub> in the colder seasons.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"625 - 638"},"PeriodicalIF":2.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141375742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shunan Yang, Yixiong Lu, Yi Hu, Boyu Chen, Zhenya Song, Min Chu
{"title":"Analysis of the Mesoscale Asymmetric Rainbands during the Slow Northward-Moving Period of Typhoon In-Fa (2021)","authors":"Shunan Yang, Yixiong Lu, Yi Hu, Boyu Chen, Zhenya Song, Min Chu","doi":"10.1007/s13143-024-00370-8","DOIUrl":"10.1007/s13143-024-00370-8","url":null,"abstract":"<div><p>After making landfall, Typhoon In-Fa (2021) moved slowly, resulting in heavy rainfall and flooding across fourteen provinces in China. This extreme precipitation was primarily linked to the evolution of active mesoscale convective systems. This study analyzes the characteristics and causes of mesoscale rainbands during In-Fa’s slow northward-moving period, aiming to identify the key factors that influence the detailed evolution of typhoon rainbands and to enhance typhoon quantitative precipitation forecasting skill. In-Fa’s mesoscale asymmetric rainbands can be categorized into three types: mesoscale spiral rainbands, a convective rainband to the east of In-Fa, and a rainband to the north of In-Fa. Mesoscale low-level jets are a critical factor in the development of mesoscale spiral rainbands. The wind speed gradient near these jets, along with the convergence of wind directions between two jets, fosters low-level convergence and upward motion, triggering the evolution of several mesoscale rainbands. The convective rainband to the east of In-Fa flourishes under conditions of high humidity and energy, displaying distinct diurnal variations. This is due to the strengthening of low-level jets at night, which enhances both dynamic convergence and water vapor availability. The presence of moderate to strong convective available potential energy (600–1500 J kg<sup>−1</sup>), substantial whole-layer water vapor (relative humidity exceeding 90–95%), and a high 0 °C-layer favors the development of efficient warm-cloud convective precipitation, leading to intense hourly rainfall. The rainband to the north of In-Fa is primarily associated with cold air intrusion in the lower troposphere, although the interaction between typhoon and mid-latitude systems has not yet occurred. At the interface between cold and warm air, the colder air to the north side sinks while the warmer air to the south side rises, forming a secondary circulation that supports the development and persistence of precipitation on the north side of the typhoon. These findings offer a conceptual model for accurately predicting precipitation associated with typhoons that move slowly northward after landfall.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"609 - 624"},"PeriodicalIF":2.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00370-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Youjung Oh, Sang Myeong Oh, Pil-Hun Chang, Il-Ju Moon
{"title":"Detection and Warning System for Sudden high Swells on the east Coast of the Korean Peninsula","authors":"Youjung Oh, Sang Myeong Oh, Pil-Hun Chang, Il-Ju Moon","doi":"10.1007/s13143-024-00368-2","DOIUrl":"10.1007/s13143-024-00368-2","url":null,"abstract":"<div><p>Over the past few years, sudden high swells (SHSs) have often occurred on the east coast of the Korean Peninsula (KP), especially during the winter season, causing many casualties and considerable property damage. High waves can be generated suddenly even in the absence of strong winds, sweeping away unsuspecting people on breakwaters or causing damage to properties such as ports and fish farms located on coasts. In this study, we developed a detection and warning system for SHSs on the KP’s east coast. First, we developed a method for separating waves into the wind sea and swell components based on one-dimensional wave spectra, wind speed, wind direction, and mean wave direction data obtained from coastal buoys. Using the calculated significant wave height difference between swells and wind seas, as well as wind speed, we developed a SHS alert system with three levels: “Attention,” “Watch,” and “Warning.” This system successfully detected three recent swell events on the east coast of the KP. Applying this system to an operational wave prediction model, it successfully issued an alert 72 h before the SHS reached the coast. The proposed system can provide consistent quantitative forecast information that can greatly contribute to preventing casualties and property damage caused by SHSs.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"555 - 572"},"PeriodicalIF":2.2,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abeda Tabassum, Seong-Ho Hong, Kyeongjoo Park, Jong-Jin Baik
{"title":"Impacts of Changes in Soil Moisture on Urban Heat Islands and Urban Breeze Circulations: Idealized Ensemble Simulations","authors":"Abeda Tabassum, Seong-Ho Hong, Kyeongjoo Park, Jong-Jin Baik","doi":"10.1007/s13143-024-00369-1","DOIUrl":"10.1007/s13143-024-00369-1","url":null,"abstract":"<div><p>Soil moisture plays important roles in land surface and hydrological processes, and its changes can greatly affect weather and climate. In this study, we examine how changes in soil moisture impact the urban heat island (UHI) and urban breeze circulation (UBC) through idealized ensemble simulations. As soil moisture increases, the latent heat flux increases considerably in the rural area. Hence, in the rural area, the sensible heat flux and surface temperature decrease, which decreases the rural air temperature. The decrease in rural air temperature leads to increases in UHI intensity and thus UBC intensity. The urban air temperature also decreases with increasing soil moisture since the cooler rural air is advected to the urban area by the enhanced low-level convergent flow of the UBC. However, the decrease in air temperature is smaller in the urban area than in the rural area. As the UBC intensity increases, the sensible heat flux in the urban area increases. The increase in sensible heat flux in the urban area further increases the UHI intensity. The positive feedback between the UHI intensity and the UBC intensity is revealed when soil moisture increases. The decrease in air temperature in both the urban and rural areas leads to the decrease in planetary boundary layer (PBL) height. As a result, the vertical size of the UBC decreases with increasing soil moisture. As the UBC intensity increases with increasing soil moisture, the advection of water vapor from the rural area to the urban area increases. Combined with the decrease in PBL height, this reduces the water vapor deficit or even leads to the water vapor excess in the urban area depending on soil moisture content.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"541 - 553"},"PeriodicalIF":2.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00369-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141166748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Projected changes in wind erosion climatic erosivity over high mountain Asia: results from dynamical downscaling outputs","authors":"Rui Mao, Yuanyuan Xu, Jianze Zhu, Xuezhen Zhang, Shuaifeng Song, Dao-Yi Gong, Lianyou Liu, Peijun Shi","doi":"10.1007/s13143-024-00367-3","DOIUrl":"10.1007/s13143-024-00367-3","url":null,"abstract":"<div><p>Wind erosion climatic erosivity is a measure of climatic conditions that affect wind erosion. Projecting wind erosion climatic erosivity is curcial for predicting future wind erosion risk. In this study, we employed dynamic downscaling outputs from the MPI-ESM1-2-HR model to project changes in wind erosion climatic erosivity over High Mountain Asia (HMA) from 2041 to 2060 under a middle-emission scenario (an additional radiative forcing of 4.5 W/m<sup>2</sup> by 2100). From 1995 to 2014, wind erosion climatic erosivity in HMA was high in the southwest, on the Qiangtang Plateau, and in the Qaidam Basin, exceeding 1 kg·m<sup>−1</sup> s<sup>−1</sup>. Compared to the period 1995–2014, wind erosion climatic erosivity is projected to decrease by 0.5 kg·m<sup>−1</sup> s<sup>−1</sup> over the east of the Qiangtang Plateau and increase by approximately 1 kg·m<sup>−1</sup> s<sup>−1</sup> in the southwest of the HMA during 2041–2060 under the middle emission scenario. This increase in wind erosion climatic erosivity in the southwest of HMA is attributed to a projected rise in high-wind frequency for 2041–2060 compared to 1995–2014. Conversely, the decrease in wind erosion climatic erosivity in the east of the Qiangtang Plateau results from increased precipitation during 2041–2060, which mitigates the effects of increased high-wind frequencies. Given the growing risk of wind erosion in the southwest of the HMA, it’s essential to implement appropriate mitigation policies for the future.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"525 - 540"},"PeriodicalIF":2.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}