{"title":"Effects of Long-term Climate Change on Typhoon Rainfall Associated with Southwesterly Monsoon Flow near Taiwan: Mindulle (2004) and Morakot (2009)","authors":"Chung-Chieh Wang, Li-Shan Tseng, Chien-Chang Huang, Pi-Yu Chuang, Nan-Chou Su, Cheng-Ta Chen, Shih-How Lo, Kazuhisa Tsuboki","doi":"10.1007/s13143-023-00345-1","DOIUrl":"10.1007/s13143-023-00345-1","url":null,"abstract":"<div><p>Typhoons Morakot (2009) and Mindulle (2004) were two of the rainiest and most damaging typhoons to hit Taiwan on record, where both cases are associated with a strong low-level southwesterly monsoon flow. The moisture-rich southwesterly monsoon flow and the typhoon-induced northwesterly current usually converge on Taiwan’s Central Mountain Range to produce catastrophic rainfall. The two storms are simulated with a cloud-resolving model (CRM) using the pseudo-global-warming (PGW) methodology to assess the fraction of precipitation attributable to long-term climate change. For each storm, two scenarios are simulated and compared—the control run in present-day climate and the sensitivity test in a past environment four decades ago, where the climate-change signal (“deltas”) is computed using global reanalysis data as the difference between 1990–2009 and 1950–1969. Being realistically reproduced by the CRM at a 3-km grid size in the control run, both typhoons progress in the sensitivity test with highly similar evolution to their present-day counterpart, even though the background in the sensitivity run is slightly cooler and drier than the present. Under the current climate, Morakot and Mindulle produce more rainfall by about 5 mm per day within 300–400 km from the center during their lifespan (equal to an increase of ~4–8%) compared to their counterparts in past climates. Such results are in close agreement with previous studies, and the shift in mean daily rainfall is tested as statistically significant at a confidence level of 99.5%. The water budget analysis shows that the increased rainfall from past to present climate is accounted for mainly by the low-level convergence of moisture associated with a more vigorous secondary circulation and a higher precipitable water amount.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 3","pages":"345 - 364"},"PeriodicalIF":2.2,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Forecast accuracy and physics sensitivity in high-resolution simulations of precipitation events in summer 2022 by the Korean Integrated Model","authors":"Eun-Hee Lee, Sujeong Cho, Keon-Hee Cho, Ji-Young Han, Youngsu Lee, Junghan Kim","doi":"10.1007/s13143-024-00358-4","DOIUrl":"10.1007/s13143-024-00358-4","url":null,"abstract":"<div><p>The precipitation prediction of the Korean Integrated Model (KIM) is evaluated over South Korea for the summer season of July–August 2022, and key factors for accurate predictions are examined using various approaches, including case studies under distinct synoptic patterns and physics sensitivity experiments. In this study, a five-day prediction experiment was conducted using the latest version of KIM in a near real-time full cycle configuration with 8-km grid spacing, while additional case simulations and prediction tests were conducted on low-resolution or cold-run testbeds. For verification, a newly designed synoptic pattern verification was introduced to assist to the conventional dichotomous verification for daily precipitation. It was found that heavy rainfall events over South Korea are determined by two dominant patterns: frontal and cyclonic. KIM can successfully discriminate between synoptic patterns with a detection rate of approximately 85% for these two types within a short-range prediction. However, it is evident that the precise prediction of precipitation requires an accurate location of the precipitation system within a specified timeframe, wherein KIM shows weakness in delaying the movement of extratropical cyclones with forecast lead times. The significance of moist physics is also highlighted by sensitivity experiments that control convective trigger conditions. This demonstrates that large-scale precipitation from a microphysics scheme must be enhanced to properly represent the strong development of inland rain systems over South Korea, which are highly sensitive to convective precipitation activity in the numerical model, especially in upwind ocean regions.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"1 - 20"},"PeriodicalIF":2.2,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reassessing the Climate Change Narrative","authors":"Richard S. Lindzen, John R. Christy","doi":"10.1007/s13143-024-00353-9","DOIUrl":"10.1007/s13143-024-00353-9","url":null,"abstract":"<div><p>We note that the atmosphere has distinct tropical and extratropical regimes. The tropical regime is significantly dependent on the greenhouse effect and is characterized by temperatures that are largely horizontally homogenized. The extratropical regime is dominated by large scale unstable convective eddies that transport heat between the tropics and the poles (leaving the poles warmer than they otherwise would be) and serve to determine the temperature difference between the tropics and the poles. Changes in tropical temperature and in the tropics-to-pole temperature difference both contribute to changes in global mean temperature. It turns out that changes in global mean temperature associated with major climate change (i.e., the last glacial maximum and the warm period of the Eocene about 50 million years ago) were associated primarily with changes in the tropics-to-pole temperature differences. By contrast, changes in global mean temperature over the past 150 years or so are almost entirely associated with changes in tropical temperature. Thus, there is no intrinsic amplification associated with a change in the tropics-to-pole temperature difference. However, model simulations of climate behave differently from both observations and from each other. In particular, they all show more significant contributions for the tropics-to-pole temperature difference – sometimes much more significant. They also show excessive tropical warming.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 3","pages":"319 - 327"},"PeriodicalIF":2.2,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00353-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Publisher Correction to: Assessment and Projection of Compound Wind and Precipitation Extremes in EC-Earth3 of CMIP6 Simulations","authors":"Xiaoyu Zhu, Jianping Tang, Yi Yang","doi":"10.1007/s13143-024-00360-w","DOIUrl":"10.1007/s13143-024-00360-w","url":null,"abstract":"","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"605 - 605"},"PeriodicalIF":2.2,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanan Fu, Jianhua Sun, Zhifang Wu, Tao Chen, Xiaodong Song, Shijun Sun, Shenming Fu
{"title":"Formation Mechanisms of the Extreme Rainfall and Mesoscale Convective Systems over South China during the Dragon Boat Rainy Season of 2022","authors":"Yanan Fu, Jianhua Sun, Zhifang Wu, Tao Chen, Xiaodong Song, Shijun Sun, Shenming Fu","doi":"10.1007/s13143-024-00357-5","DOIUrl":"10.1007/s13143-024-00357-5","url":null,"abstract":"<div><p>The formation mechanisms of the record-breaking rainfall event during the Dragon Boat Rainy Season (DBRS) of 2022 are comprehensively analyzed from the synoptic scale and the mesoscale perspectives. The extreme rainfall event is characterized by the highest rainfall amount since 1981, and an abnormal spatial distribution with much higher (lower) rainfall amount in the northern (southern) part of South China. The abnormal circulation and thermodynamic conditions are mainly responsible for the extreme rainfall. The favorite synoptic condition for rainfall is the combination of warm advection, frontal forcing, orographic lifting and low-level jet favor the convection development. The similar configurations repeatedly impact South China during the DBRS of 2022, causing multiple heavy rainfall events, leading to the extreme rainfall of the whole period. The abnormal moisture convergence together with the frontal zone, which is stronger than the climatology, results in the rainfall centers over the northern part of South China. 54.35% of the rainfall amount is related to mesoscale convective systems (MCSs) which mainly originate from four regions. The MCSs from the four regions are characterized by different formation peaks, spatial scales, lifetimes and propagations. The large-scale warm and moist air mass, the moistening caused by synoptic advection and the local diabatic heating are responsible for the increasing instability for the MCSs. The low-level jets play an important role in the formation of MCSs by providing moisture. The thermodynamic (dynamic) environmental conditions control the formation of MCSs in the afternoon (night).</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"1 - 18"},"PeriodicalIF":2.2,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140117196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuanglong Jin, Xiaolin Liu, Wang Bo, Zongpeng Song
{"title":"Mechanisms Accounting for the Formation of the Strong Winds that Caused the Tripping Incident of Transmission Line in Eastern Inner Mongolia","authors":"Shuanglong Jin, Xiaolin Liu, Wang Bo, Zongpeng Song","doi":"10.1007/s13143-024-00352-w","DOIUrl":"10.1007/s13143-024-00352-w","url":null,"abstract":"<div><p>Meteorological disasters pose a serious threat to the State Grid Corporation of China, which covers ~ 88% of Chinese national territory. Of these, strong winds deserve a special attention, as they often induce windage yaw discharge of transmission lines and even toppling of transmission towers, resulting in serious economic losses. On 28 June 2023, a severe tripping incident of transmission line appears in Eastern Inner Mongolia due to strong winds. In this study, we conduct comprehensive analyses to clarify the favorable background conditions and governing mechanisms for producing the strong winds. Main results are shown as follows. Synoptic analysis indicates that, the favorable background environments for the event are characterized by a strong upper-level jet associated upper tropospheric divergence; an intense middle-level warm advection ahead of a shortwave trough; and a long-lived lower-tropospheric mesoscale vortex. The strong winds that cause the tripping incident mainly occur in the southeastern quadrant of the vortex. Vorticity budget presents that the period from the mesoscale-vortex’s formation to 4 h before is crucial to the mesoscale vortex, as cyclonic vorticity increases rapidly mainly due to the lower-level convergence-related vertical stretching. In contrast, the horizontal transport mainly results in a net export of cyclonic vorticity, which is the most detrimental factor. Kinetic energy (KE) budget shows that, after the mesoscale vortex forms, the strong winds within its southeastern quadrant enhance rapidly. Overall, the positive work done by the pressure gradient force associated with the mesoscale vortex dominates the enhancement of strong winds; the horizontal transport of KE is the second dominant factor, and the vertical transport of KE (i.e., the downward momentum transportation) shows the least contribution.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 3","pages":"289 - 302"},"PeriodicalIF":2.2,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00352-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characteristic Changes in the Strengthening Western Disturbances over Karakoram in Recent Decades","authors":"Aaquib Javed, Pankaj Kumar","doi":"10.1007/s13143-024-00354-8","DOIUrl":"10.1007/s13143-024-00354-8","url":null,"abstract":"<div><p>Western disturbances (WDs) are upper-tropospheric mid-latitude synoptic systems propagating eastward along the subtropical westerly jet stream. They are capable of causing extreme precipitation events and have strengthened their impact over the Karakoram part of the Himalayas in recent decades. They play a crucial role in the sustenance of the “Karakoram Anomaly,” which refers to the anomalous stability/surge of a few Karakoram glaciers in contrast to the other glaciers of the Himalayas. Using the existing WD-catalog derived from ERA5 and MERRA2 reanalysis datasets, we observed that the core genesis zone for Karakoram WDs had undergone a statistically significant shift of ~ 9.7<sup>o</sup>E, migrating towards more favourable conditions for cyclogenesis. The study proposes a new parameter to identify regions of potential extratropical cyclogenesis. The shift can be attributed to an enhanced genesis potential, convergence, and higher moisture availability along the WD path. Composite analysis suggests that moisture availability has risen significantly over the shifted zone. Moreover, the propagation speeds of these systems have significantly declined, which explains the recent intensification of precipitation events related to WDs over the Karakoram and hints toward a crucial synoptic influence on the anomalous regional mass-balance phenomenon.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 3","pages":"255 - 270"},"PeriodicalIF":2.2,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139772188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elvina Faustina Dhata, Chang Ki Kim, Myeongchan Oh, Hyun-Goo Kim
{"title":"Toward Improved Site-Adaptation for Direct Normal Irradiance: Exploiting Sky-Condition Classification for Improved Regression-Based, Quantile-Based, and Neural Network Models","authors":"Elvina Faustina Dhata, Chang Ki Kim, Myeongchan Oh, Hyun-Goo Kim","doi":"10.1007/s13143-023-00350-4","DOIUrl":"10.1007/s13143-023-00350-4","url":null,"abstract":"<div><p>Site adaptation has become a necessary step in resource assessment for ensuring the bankability of a renewable energy project. The process involves collecting short-term observation data to correct the long-term dataset available from the satellite-derived models, which could thus provide a more accurate estimate of the solar resource data. This study aims to enhance the site-adaptation of direct normal irradiance, as its correction remains notably challenging in comparison to global horizontal irradiance due to its larger error, which is often attributed to the complexity of cloud modeling. A new methodology for site-adaptation is proposed that exploits the use of a new indicator variable that describes the correctness of sky-condition classification by the clear-sky index. This variable has dual applications within the context of site adaptation: firstly, it is employed in the two-step binning procedure subsequent to the conventional clear-sky binning during preprocessing, and secondly, it serves as an additional input feature in machine-learning-based site adaptation. The results show that the former method can reduce the mean bias error to a mere 0.4%, while the latter is better for reducing large discrepancies as shown by the lower root mean squared error.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 3","pages":"231 - 244"},"PeriodicalIF":2.2,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hee-Ae Kim, Junho Ho, Guifu Zhang, Kyung-Ja Ha, Song-You Hong, Chang-Hoi Ho
{"title":"Polarimetric Radar Signatures in Various Lightning Activities During Seoul (Korea) Flood on August 8, 2022","authors":"Hee-Ae Kim, Junho Ho, Guifu Zhang, Kyung-Ja Ha, Song-You Hong, Chang-Hoi Ho","doi":"10.1007/s13143-023-00346-0","DOIUrl":"10.1007/s13143-023-00346-0","url":null,"abstract":"<div><p>On August 8 and 9, 2022, a record-breaking rain rate of 142 mm h<sup>−1</sup>, with an accumulated rainfall of more than 500 mm, was observed in the Seoul metropolitan area, Republic of Korea. This study focuses on analyzing the concentration of lightning in southern Seoul, which occurred solely on August 8. It is worth noting that the daily rainfall of August 8 was approximately twice that of August 9 (381 mm on August 8 vs. 198 mm on August 9). The RKSG (located in Yongin, 40 km south of Seoul) Weather Surveillance Radar-1988 Doppler was used to explore the characteristics of cloud microphysics associated with lightning activity. Four major heavy rain periods on August 8 were grouped into three categories of lightning rate (e.g., intense, moderate, and none), and their polarimetric signatures were compared. Significant differences in the vertical distribution of graupel were found within the temperature range of 0 °C and − 20 °C, as indicated by radar reflectivity (Z<sub>H</sub>) > 40 dBZ and differential reflectivity (Z<sub>DR</sub>) < 0.5 dB. Although graupel was detected in all three categories at the relatively warm temperatures of 0 °C to − 10 °C, its presence extended into colder regions exclusively in the intense category. This observation preceded the appearance of lightning by approximately 6 min. At heights with temperature ≤ − 20 °C, a high concentration of vertically aligned ice crystals was observed in lightning-prone regions, leading to a decrease in differential phase (Φ<sub>DP</sub>). In summary, this study provides valuable insights into the microphysical characteristics of thunderstorms and their relationship to lightning activity in the Seoul metropolitan area.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"401 - 415"},"PeriodicalIF":2.2,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-023-00346-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138820980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Air Quality Forecasting Using Big Data and Machine Learning Algorithms","authors":"Youn-Seo Koo, Yunsoo Choi, Chang‐Hoi Ho","doi":"10.1007/s13143-023-00347-z","DOIUrl":"10.1007/s13143-023-00347-z","url":null,"abstract":"","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"59 5","pages":"529 - 530"},"PeriodicalIF":2.2,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138601854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}