Asia-Pacific Journal of Atmospheric Sciences最新文献

筛选
英文 中文
High and Equatorial Mesospheric Dynamical Response to the Minor Stratospheric Warming of 2014/15: Comparison with major SSW Events 2005/06 and 2008/09 高纬度和赤道中间层对 2014/15 年小平流层变暖的动态响应:与 2005/06 年和 2008/09 年重大 SSW 事件的比较
IF 2.2 4区 地球科学
Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-05-14 DOI: 10.1007/s13143-024-00364-6
Lynn Salome Daniel, G. J. Bhagavathiammal
{"title":"High and Equatorial Mesospheric Dynamical Response to the Minor Stratospheric Warming of 2014/15: Comparison with major SSW Events 2005/06 and 2008/09","authors":"Lynn Salome Daniel,&nbsp;G. J. Bhagavathiammal","doi":"10.1007/s13143-024-00364-6","DOIUrl":"10.1007/s13143-024-00364-6","url":null,"abstract":"<div><p>We present the high and equatorial mesospheric dynamical response to the minor stratospheric warming that occurred in 2014/15 and compared it with the major stratospheric warming events of 2005/06 and 2008/09. Meteor radar observations over Esrange (67.88<sup>o</sup>N, 21.07<sup>o</sup> E), Mohe (52.97<sup>o</sup>N, 122.53<sup>o</sup>E) and Kototabang (0.20<sup>o</sup>S, 100.32<sup>o</sup>E) have been extensively utilized in addition to ERA 5 Reanalysis datasets. Possessing the unique feature of a vortex displacement and split, the minor warming of 2014/15 was observed on 27 December 2014 followed by four subsequent temperature peaks. During the 2014/15 minor SSW, the tropical stratospheric temperature decreased, causing upwelling similar to the major SSW events 2005/06 and 2008/09. The equatorial mesospheric zonal wind in 2014/15 displayed maximum westward wind with a delay of ~ 19 days after the vortex disruption comparable to the major SSW events. Whereas, over Esrange and Mohe, the westward wind maxima occurred about the vortex disruption during all the warming events. During the minor SSW 2014/15, the ~ 16-day planetary wave is observed to be relatively stronger in the equatorial mesosphere than the high latitude mesosphere. The Eliassen Palm flux diagnostics revealed the intrusion of planetary wave energy from high latitudes to the tropical band, suggesting meridional and equatorward propagation of the planetary waves.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"1 - 17"},"PeriodicalIF":2.2,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations of Stable Isotopic Composition in Precipitation and their Controlling Factors, a Case Study in Dongying, Yellow River Delta 降水中稳定同位素组成的变化及其控制因素--黄河三角洲东营案例研究
IF 2.2 4区 地球科学
Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-05-06 DOI: 10.1007/s13143-024-00366-4
Lili Shao, Wenqing Han, Xue Yang
{"title":"Variations of Stable Isotopic Composition in Precipitation and their Controlling Factors, a Case Study in Dongying, Yellow River Delta","authors":"Lili Shao,&nbsp;Wenqing Han,&nbsp;Xue Yang","doi":"10.1007/s13143-024-00366-4","DOIUrl":"10.1007/s13143-024-00366-4","url":null,"abstract":"<div><p>The stable isotopes of hydrogen and oxygen in precipitation provide a useful reference for the study of hydrological processes. However, the interpretation of stable isotopes in a monsoon climate zone remains uncertain. To investigate isotopic variations and the controlling factors in the midlatitude monsoon region, continuous observations of precipitation isotopes in Dongying were made. We investigate the controlling factors of precipitation δ<sup>18</sup>O by analyzing their relationship with temperature, precipitation amount, relative humidity, surface atmospheric pressure, and outgoing longwave radiation (OLR) data. Back trajectory analysis of the HYSPLIT model based on precipitation events was also used to trace moisture sources. The results show that there is a significant spatial correlation between stable isotopes of precipitation and precipitation amount in both monsoon and non-monsoon periods. The integration of large-scale convection over several days (0–10 days) preceding each event was determined as the main driver of precipitation isotopes in Dongying. The difference is that in the monsoon period, the isotope of precipitation records the convective activity of upstream water vapor in the past 10 days, while in the non-monsoon period, the precipitation isotope reflects the convective activity of upstream water vapor in the past 3 days. These findings improve regional-scale understanding of hydrological cycles in the East Asian mid-latitude monsoon region and have the potential to improve our understanding of isotopic variations in the proxy archives of the East Asian monsoon region.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"495 - 506"},"PeriodicalIF":2.2,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Predictability of a Heavy Rainfall Event during the Summer of 2022 Using an All-sky Radiance Assimilation Experiment 利用全天空辐射同化实验预测 2022 年夏季的强降雨事件
IF 2.2 4区 地球科学
Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-04-29 DOI: 10.1007/s13143-024-00365-5
Hyo-Jong Song, Sihye Lee
{"title":"The Predictability of a Heavy Rainfall Event during the Summer of 2022 Using an All-sky Radiance Assimilation Experiment","authors":"Hyo-Jong Song,&nbsp;Sihye Lee","doi":"10.1007/s13143-024-00365-5","DOIUrl":"10.1007/s13143-024-00365-5","url":null,"abstract":"<div><p>This paper presents the results of the recent development of the all-sky radiance assimilation system in the Korean Integrated Model (KIM). In the cycled analysis and forecast experiments, the increased coverage of radiance data in cloudy regions improved the quality of initial fields for mass variables, temperature and humidity. The experimental period covered the record-breaking heavy rainfall event on August 9, 2022. We examined the simulation accuracy of the western North Pacific subtropical high (WNPSH) in both clear- and all-sky experiments. In the clear-sky experiment, northward propagation of the WNPSH was restricted. A humid bias exists with clear-sky radiance assimilation over the WNPSH region. Since humid air is lighter than dry air, in this situation, the geopotential height (GPH) should be lower to achieve the same pressure, and a low-pressure bias occurs. All-sky radiance assimilation dries the moisture field, which helps elevate the GPH over the WNPSH region. The expansion of the WNPSH yielded a steeper confrontation in the air between the land and ocean around the southeastern sea of the Korean Peninsula to predict the strength of rainfall events more accurately. A more accurate simulation of the jet stream outlet was also demonstrated in an all-sky experiment. This study shows that the all-sky radiance assimilation can help to more accurately predict extreme rainfall events via proper simulations of large-scale fields.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"469 - 478"},"PeriodicalIF":2.2,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00365-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of the Urban Heat Island in Dhaka, Bangladesh, and Its Interaction with Heat Waves 孟加拉国达卡城市热岛的特征及其与热浪的相互作用
IF 2.2 4区 地球科学
Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-04-02 DOI: 10.1007/s13143-024-00362-8
Abeda Tabassum, Kyeongjoo Park, Jaemyeong Mango Seo, Ji-Young Han, Jong-Jin Baik
{"title":"Characteristics of the Urban Heat Island in Dhaka, Bangladesh, and Its Interaction with Heat Waves","authors":"Abeda Tabassum,&nbsp;Kyeongjoo Park,&nbsp;Jaemyeong Mango Seo,&nbsp;Ji-Young Han,&nbsp;Jong-Jin Baik","doi":"10.1007/s13143-024-00362-8","DOIUrl":"10.1007/s13143-024-00362-8","url":null,"abstract":"<div><p>This study examines the characteristics of the urban heat island (UHI) in Dhaka, the densely populated capital city of Bangladesh under the influence of the South Asian monsoon, and its interaction with heat waves. For this, meteorological data at Dhaka (urban) and Madaripur (rural) stations and reanalysis data for the period of 1995–2019 are used for analysis. Here, the UHI intensity is defined as the urban-rural difference in 2-m temperature, and a heat wave is defined as the phenomenon which persists for two or more consecutive days with the daily maximum 2-m temperature exceeding its 90th percentile. The UHI intensity in Dhaka is in an increasing trend over the past 25 years (0.21 °C per decade). The average UHI intensity in Dhaka is 0.48 °C. The UHI is strongest in winter (0.95 °C) and weakest in the monsoon season (0.23 °C). In all seasons, the UHI is strongest at 2100 LST. The average daily maximum UHI intensity in Dhaka is 2.15 °C. Through the multiple linear regression analysis, the relative importance of previous-day daily maximum UHI intensity (PER), wind speed, relative humidity (RH), and cloud fraction which affect the daily maximum UHI intensity is examined. In the pre-monsoon season, RH is the most important variable followed by PER. In the monsoon season, RH is the predominantly important variable. In the post-monsoon season and winter, PER is the most important variable followed by RH. The occurrence frequency of heat waves in Dhaka shows a statistically significant increasing trend in the monsoon season (5.8 days per decade). It is found that heat waves in Bangladesh are associated with mid-to-upper tropospheric anticyclonic-flow and high-pressure anomalies in the pre-monsoon season and low-to-mid tropospheric anticyclonic-flow and high-pressure anomalies in the monsoon season. Under heat waves, the UHI intensity is synergistically intensified in both daytime and nighttime (nighttime only) in the pre-monsoon (monsoon) season. The decreases in relative humidity and cloud fraction are favorable for the synergistic UHI-heat wave interaction.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"479 - 493"},"PeriodicalIF":2.2,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00362-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moisture Sources and Transport Paths during the Summer Heavy Rainfall Events in the Three-River-Headwater Region of the Tibetan Plateau 青藏高原三江源地区夏季暴雨过程中的水汽来源和输送路径
IF 2.2 4区 地球科学
Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-03-27 DOI: 10.1007/s13143-024-00355-7
Shujing Shen, Hui Xiao, Huiling Yang, Danhong Fu, Weixi Shu
{"title":"Moisture Sources and Transport Paths during the Summer Heavy Rainfall Events in the Three-River-Headwater Region of the Tibetan Plateau","authors":"Shujing Shen,&nbsp;Hui Xiao,&nbsp;Huiling Yang,&nbsp;Danhong Fu,&nbsp;Weixi Shu","doi":"10.1007/s13143-024-00355-7","DOIUrl":"10.1007/s13143-024-00355-7","url":null,"abstract":"<div><p>The moisture sources, transport paths and the quantitative moisture contribution of each source region and path of the South-West, West, North-East and South-East heavy rainfall types in the Three-River-Headwater region (TRHR) of Tibetan Plateau (TP) in summer are tracked, calculated and compared using the FLEXPART model. The results show that: the southern TP and the local target region of TRHR contribute the most moisture to the four types of precipitation. In addition, the northern TP is the third predominant moisture source region to the South-West and West rainfall types, which are distributed in the west of TRHR. Nevertheless, the third critical source region of the North-East and South-East rainfall types, which occur in the east of TRHR, is the eastern areas outside the TP. Four kinds of rainfall events have four identical moisture transport paths: Southern short-distance path, Southern long-distance path, Southwest path and Northwest path. The Southern short-distance path contributes the most moisture to the South-West (24.2%), West (19.8%) and South-East (15.9%) rainfall types, the second most moisture of which respectively comes from the Northwest path, Southwest path and Southeast path. In addition, the Southern short-distance path and Southwest path are the most active moisture transport channels of the three types of precipitation (more moisture trajectories are transported through these two paths). The moisture of North-East rainfall type is primarily contributed by the East path (26.0%) and the Northwest path (18.2%), and the most active moisture transport channels are the East path (21.9%) and the Southern long-distance path (19.9%).</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 3","pages":"365 - 384"},"PeriodicalIF":2.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: The Effectiveness of a Probabilistic Principal Component Analysis Model and Expectation Maximisation Algorithm in Treating Missing Daily Rainfall Data 出版商更正:概率主成分分析模型和期望最大化算法在处理缺失日降雨量数据中的有效性
IF 2.2 4区 地球科学
Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-03-27 DOI: 10.1007/s13143-024-00363-7
Zun Liang Chuan, Sayang Mohd Deni, Soo-Fen Fam, Noriszura Ismail
{"title":"Publisher Correction: The Effectiveness of a Probabilistic Principal Component Analysis Model and Expectation Maximisation Algorithm in Treating Missing Daily Rainfall Data","authors":"Zun Liang Chuan,&nbsp;Sayang Mohd Deni,&nbsp;Soo-Fen Fam,&nbsp;Noriszura Ismail","doi":"10.1007/s13143-024-00363-7","DOIUrl":"10.1007/s13143-024-00363-7","url":null,"abstract":"","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"607 - 607"},"PeriodicalIF":2.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Long-term Climate Change on Typhoon Rainfall Associated with Southwesterly Monsoon Flow near Taiwan: Mindulle (2004) and Morakot (2009) 长期气候变化对台湾附近与西南季风气流相关的台风降雨的影响:Mindulle(2004 年)和 Morakot(2009 年)
IF 2.2 4区 地球科学
Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-03-22 DOI: 10.1007/s13143-023-00345-1
Chung-Chieh Wang, Li-Shan Tseng, Chien-Chang Huang, Pi-Yu Chuang, Nan-Chou Su, Cheng-Ta Chen, Shih-How Lo, Kazuhisa Tsuboki
{"title":"Effects of Long-term Climate Change on Typhoon Rainfall Associated with Southwesterly Monsoon Flow near Taiwan: Mindulle (2004) and Morakot (2009)","authors":"Chung-Chieh Wang,&nbsp;Li-Shan Tseng,&nbsp;Chien-Chang Huang,&nbsp;Pi-Yu Chuang,&nbsp;Nan-Chou Su,&nbsp;Cheng-Ta Chen,&nbsp;Shih-How Lo,&nbsp;Kazuhisa Tsuboki","doi":"10.1007/s13143-023-00345-1","DOIUrl":"10.1007/s13143-023-00345-1","url":null,"abstract":"<div><p>Typhoons Morakot (2009) and Mindulle (2004) were two of the rainiest and most damaging typhoons to hit Taiwan on record, where both cases are associated with a strong low-level southwesterly monsoon flow. The moisture-rich southwesterly monsoon flow and the typhoon-induced northwesterly current usually converge on Taiwan’s Central Mountain Range to produce catastrophic rainfall. The two storms are simulated with a cloud-resolving model (CRM) using the pseudo-global-warming (PGW) methodology to assess the fraction of precipitation attributable to long-term climate change. For each storm, two scenarios are simulated and compared—the control run in present-day climate and the sensitivity test in a past environment four decades ago, where the climate-change signal (“deltas”) is computed using global reanalysis data as the difference between 1990–2009 and 1950–1969. Being realistically reproduced by the CRM at a 3-km grid size in the control run, both typhoons progress in the sensitivity test with highly similar evolution to their present-day counterpart, even though the background in the sensitivity run is slightly cooler and drier than the present. Under the current climate, Morakot and Mindulle produce more rainfall by about 5 mm per day within 300–400 km from the center during their lifespan (equal to an increase of ~4–8%) compared to their counterparts in past climates. Such results are in close agreement with previous studies, and the shift in mean daily rainfall is tested as statistically significant at a confidence level of 99.5%. The water budget analysis shows that the increased rainfall from past to present climate is accounted for mainly by the low-level convergence of moisture associated with a more vigorous secondary circulation and a higher precipitable water amount.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 3","pages":"345 - 364"},"PeriodicalIF":2.2,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forecast accuracy and physics sensitivity in high-resolution simulations of precipitation events in summer 2022 by the Korean Integrated Model 韩国综合模式对 2022 年夏季降水事件高分辨率模拟的预测精度和物理敏感性
IF 2.2 4区 地球科学
Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-03-21 DOI: 10.1007/s13143-024-00358-4
Eun-Hee Lee, Sujeong Cho, Keon-Hee Cho, Ji-Young Han, Youngsu Lee, Junghan Kim
{"title":"Forecast accuracy and physics sensitivity in high-resolution simulations of precipitation events in summer 2022 by the Korean Integrated Model","authors":"Eun-Hee Lee,&nbsp;Sujeong Cho,&nbsp;Keon-Hee Cho,&nbsp;Ji-Young Han,&nbsp;Youngsu Lee,&nbsp;Junghan Kim","doi":"10.1007/s13143-024-00358-4","DOIUrl":"10.1007/s13143-024-00358-4","url":null,"abstract":"<div><p>The precipitation prediction of the Korean Integrated Model (KIM) is evaluated over South Korea for the summer season of July–August 2022, and key factors for accurate predictions are examined using various approaches, including case studies under distinct synoptic patterns and physics sensitivity experiments. In this study, a five-day prediction experiment was conducted using the latest version of KIM in a near real-time full cycle configuration with 8-km grid spacing, while additional case simulations and prediction tests were conducted on low-resolution or cold-run testbeds. For verification, a newly designed synoptic pattern verification was introduced to assist to the conventional dichotomous verification for daily precipitation. It was found that heavy rainfall events over South Korea are determined by two dominant patterns: frontal and cyclonic. KIM can successfully discriminate between synoptic patterns with a detection rate of approximately 85% for these two types within a short-range prediction. However, it is evident that the precise prediction of precipitation requires an accurate location of the precipitation system within a specified timeframe, wherein KIM shows weakness in delaying the movement of extratropical cyclones with forecast lead times. The significance of moist physics is also highlighted by sensitivity experiments that control convective trigger conditions. This demonstrates that large-scale precipitation from a microphysics scheme must be enhanced to properly represent the strong development of inland rain systems over South Korea, which are highly sensitive to convective precipitation activity in the numerical model, especially in upwind ocean regions.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"1 - 20"},"PeriodicalIF":2.2,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of Ice Pellets and its Association with Meteorological Conditions in the Yeongdong Region of Korea 韩国灵洞地区的冰粒观测及其与气象条件的关系
IF 2.2 4区 地球科学
Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-03-19 DOI: 10.1007/s13143-024-00361-9
Yu-Jin Chae, Byung-Gon Kim, Young-Gil Choi, Ji-Hoon Jung, Ji-Yun Kim, Byung-Hwan Lim, Ki-Ho Chang
{"title":"Observation of Ice Pellets and its Association with Meteorological Conditions in the Yeongdong Region of Korea","authors":"Yu-Jin Chae,&nbsp;Byung-Gon Kim,&nbsp;Young-Gil Choi,&nbsp;Ji-Hoon Jung,&nbsp;Ji-Yun Kim,&nbsp;Byung-Hwan Lim,&nbsp;Ki-Ho Chang","doi":"10.1007/s13143-024-00361-9","DOIUrl":"10.1007/s13143-024-00361-9","url":null,"abstract":"<div><p>The microphysical properties of ice pellets (IP) are analyzed, and associated relevant thermodynamic conditions are investigated using rawinsonde soundings and model reanalysis data in the Yeongdong region of Korea. During the intensive observation campaign of snowfall, two distinctive IP events of 1 March 2021 (IP1) and 15 March 2018 (IP2) were observed when strong cold advection was prevalent below about 2 km as accompanied by distinctive inversion strength (4.7 ~ 9.3 ℃) above the cold layers. Cold air intrusion along the eastern side of Taebaek mountains appeared to abruptly decrease low level (850 hPa) temperature up to -4.7 ~ -3.4 ℃, but warmer than 8-year average (-9.5 ℃), respectively. Both episodes had smaller maximum size (1.8 mm in average) of ice pellets with greater fallspeed (4.2 m s<sup>−1</sup>) in comparison to general snow crystals. Ice pellets occurred in the synoptic condition of the High in the north and the Low passing by the south, which resulted in cold northeasterly over the Yeongdong region. Rawinsonde soundings show a melting layer between 800 and 700 hPa just above the freezing layer of 900 ~ 800 hPa existed, such as a reversed S temperature profile, which is also consistent with the model reanalysis. The IPs’ life time was short within a couple of hours since it occurred along with low-level strong cold advection (IP1) or rapidly-moving squall line (IP2).</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 3","pages":"329 - 343"},"PeriodicalIF":2.2,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00361-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reassessing the Climate Change Narrative 重新评估气候变化论述
IF 2.2 4区 地球科学
Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-03-15 DOI: 10.1007/s13143-024-00353-9
Richard S. Lindzen, John R. Christy
{"title":"Reassessing the Climate Change Narrative","authors":"Richard S. Lindzen,&nbsp;John R. Christy","doi":"10.1007/s13143-024-00353-9","DOIUrl":"10.1007/s13143-024-00353-9","url":null,"abstract":"<div><p>We note that the atmosphere has distinct tropical and extratropical regimes. The tropical regime is significantly dependent on the greenhouse effect and is characterized by temperatures that are largely horizontally homogenized. The extratropical regime is dominated by large scale unstable convective eddies that transport heat between the tropics and the poles (leaving the poles warmer than they otherwise would be) and serve to determine the temperature difference between the tropics and the poles. Changes in tropical temperature and in the tropics-to-pole temperature difference both contribute to changes in global mean temperature. It turns out that changes in global mean temperature associated with major climate change (i.e., the last glacial maximum and the warm period of the Eocene about 50 million years ago) were associated primarily with changes in the tropics-to-pole temperature differences. By contrast, changes in global mean temperature over the past 150 years or so are almost entirely associated with changes in tropical temperature. Thus, there is no intrinsic amplification associated with a change in the tropics-to-pole temperature difference. However, model simulations of climate behave differently from both observations and from each other. In particular, they all show more significant contributions for the tropics-to-pole temperature difference – sometimes much more significant. They also show excessive tropical warming.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 3","pages":"319 - 327"},"PeriodicalIF":2.2,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00353-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信