{"title":"Projected changes in wind erosion climatic erosivity over high mountain Asia: results from dynamical downscaling outputs","authors":"Rui Mao, Yuanyuan Xu, Jianze Zhu, Xuezhen Zhang, Shuaifeng Song, Dao-Yi Gong, Lianyou Liu, Peijun Shi","doi":"10.1007/s13143-024-00367-3","DOIUrl":null,"url":null,"abstract":"<div><p>Wind erosion climatic erosivity is a measure of climatic conditions that affect wind erosion. Projecting wind erosion climatic erosivity is curcial for predicting future wind erosion risk. In this study, we employed dynamic downscaling outputs from the MPI-ESM1-2-HR model to project changes in wind erosion climatic erosivity over High Mountain Asia (HMA) from 2041 to 2060 under a middle-emission scenario (an additional radiative forcing of 4.5 W/m<sup>2</sup> by 2100). From 1995 to 2014, wind erosion climatic erosivity in HMA was high in the southwest, on the Qiangtang Plateau, and in the Qaidam Basin, exceeding 1 kg·m<sup>−1</sup> s<sup>−1</sup>. Compared to the period 1995–2014, wind erosion climatic erosivity is projected to decrease by 0.5 kg·m<sup>−1</sup> s<sup>−1</sup> over the east of the Qiangtang Plateau and increase by approximately 1 kg·m<sup>−1</sup> s<sup>−1</sup> in the southwest of the HMA during 2041–2060 under the middle emission scenario. This increase in wind erosion climatic erosivity in the southwest of HMA is attributed to a projected rise in high-wind frequency for 2041–2060 compared to 1995–2014. Conversely, the decrease in wind erosion climatic erosivity in the east of the Qiangtang Plateau results from increased precipitation during 2041–2060, which mitigates the effects of increased high-wind frequencies. Given the growing risk of wind erosion in the southwest of the HMA, it’s essential to implement appropriate mitigation policies for the future.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"525 - 540"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-024-00367-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wind erosion climatic erosivity is a measure of climatic conditions that affect wind erosion. Projecting wind erosion climatic erosivity is curcial for predicting future wind erosion risk. In this study, we employed dynamic downscaling outputs from the MPI-ESM1-2-HR model to project changes in wind erosion climatic erosivity over High Mountain Asia (HMA) from 2041 to 2060 under a middle-emission scenario (an additional radiative forcing of 4.5 W/m2 by 2100). From 1995 to 2014, wind erosion climatic erosivity in HMA was high in the southwest, on the Qiangtang Plateau, and in the Qaidam Basin, exceeding 1 kg·m−1 s−1. Compared to the period 1995–2014, wind erosion climatic erosivity is projected to decrease by 0.5 kg·m−1 s−1 over the east of the Qiangtang Plateau and increase by approximately 1 kg·m−1 s−1 in the southwest of the HMA during 2041–2060 under the middle emission scenario. This increase in wind erosion climatic erosivity in the southwest of HMA is attributed to a projected rise in high-wind frequency for 2041–2060 compared to 1995–2014. Conversely, the decrease in wind erosion climatic erosivity in the east of the Qiangtang Plateau results from increased precipitation during 2041–2060, which mitigates the effects of increased high-wind frequencies. Given the growing risk of wind erosion in the southwest of the HMA, it’s essential to implement appropriate mitigation policies for the future.
期刊介绍:
The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.