Sukyoung Lee, Peter R. Bannon, Mingyu Park, Joseph P. Clark
{"title":"全球制约因素预测的热带太平洋气候的地带性对比","authors":"Sukyoung Lee, Peter R. Bannon, Mingyu Park, Joseph P. Clark","doi":"10.1007/s13143-024-00373-5","DOIUrl":null,"url":null,"abstract":"<div><p>The zonal gradients in sea surface temperature and convective heating across the tropical Pacific play a pivotal role in setting the weather and climate patterns globally. Under global warming, the current generation of climate models predict that the zonal gradients will decrease, but the trajectory of the observed trends is the opposite. Theories supporting either of the two projections exist, but there are many relevant processes whose net effect is unclear. In this study, a global constraint – the maximum material entropy production (maxMEP) hypothesis—is considered to help close the gap. The climate system considered here is comprised of a one-layer atmosphere and surface in six regions that represent the western tropical Pacific, eastern tropical Pacific, northern and southern midlatitudes, and northern and southern polar regions. The model conserves energy but does not explicitly include dynamics. The model input is observation-based radiative parameters. The radiative effect of greenhouse gas (GHG) loading is mimicked by prescribing increases in the longwave absorptivity <span>\\(\\epsilon\\)</span>. The model solutions predict that zonal contrasts in surface temperature, convective heat flux, and surface pressure increase with increasing <span>\\(\\epsilon\\)</span>. While maxMEP solutions in general cannot provide a definite answer to the problem, these model results strengthen the possibility that the trajectory of the observed trend reflects the response to increasing GHG loading in the atmosphere.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"669 - 678"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00373-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Zonal Contrasts of the Tropical Pacific Climate Predicted by a Global Constraint\",\"authors\":\"Sukyoung Lee, Peter R. Bannon, Mingyu Park, Joseph P. Clark\",\"doi\":\"10.1007/s13143-024-00373-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The zonal gradients in sea surface temperature and convective heating across the tropical Pacific play a pivotal role in setting the weather and climate patterns globally. Under global warming, the current generation of climate models predict that the zonal gradients will decrease, but the trajectory of the observed trends is the opposite. Theories supporting either of the two projections exist, but there are many relevant processes whose net effect is unclear. In this study, a global constraint – the maximum material entropy production (maxMEP) hypothesis—is considered to help close the gap. The climate system considered here is comprised of a one-layer atmosphere and surface in six regions that represent the western tropical Pacific, eastern tropical Pacific, northern and southern midlatitudes, and northern and southern polar regions. The model conserves energy but does not explicitly include dynamics. The model input is observation-based radiative parameters. The radiative effect of greenhouse gas (GHG) loading is mimicked by prescribing increases in the longwave absorptivity <span>\\\\(\\\\epsilon\\\\)</span>. The model solutions predict that zonal contrasts in surface temperature, convective heat flux, and surface pressure increase with increasing <span>\\\\(\\\\epsilon\\\\)</span>. While maxMEP solutions in general cannot provide a definite answer to the problem, these model results strengthen the possibility that the trajectory of the observed trend reflects the response to increasing GHG loading in the atmosphere.</p></div>\",\"PeriodicalId\":8556,\"journal\":{\"name\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"volume\":\"60 5\",\"pages\":\"669 - 678\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13143-024-00373-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13143-024-00373-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-024-00373-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Zonal Contrasts of the Tropical Pacific Climate Predicted by a Global Constraint
The zonal gradients in sea surface temperature and convective heating across the tropical Pacific play a pivotal role in setting the weather and climate patterns globally. Under global warming, the current generation of climate models predict that the zonal gradients will decrease, but the trajectory of the observed trends is the opposite. Theories supporting either of the two projections exist, but there are many relevant processes whose net effect is unclear. In this study, a global constraint – the maximum material entropy production (maxMEP) hypothesis—is considered to help close the gap. The climate system considered here is comprised of a one-layer atmosphere and surface in six regions that represent the western tropical Pacific, eastern tropical Pacific, northern and southern midlatitudes, and northern and southern polar regions. The model conserves energy but does not explicitly include dynamics. The model input is observation-based radiative parameters. The radiative effect of greenhouse gas (GHG) loading is mimicked by prescribing increases in the longwave absorptivity \(\epsilon\). The model solutions predict that zonal contrasts in surface temperature, convective heat flux, and surface pressure increase with increasing \(\epsilon\). While maxMEP solutions in general cannot provide a definite answer to the problem, these model results strengthen the possibility that the trajectory of the observed trend reflects the response to increasing GHG loading in the atmosphere.
期刊介绍:
The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.