Anis Athirah Abdul Razak, Liyana Shatar, Aima Ramli, Syara Kassim, Mohd Sabri Mohd Ghazali, Hui Yee Chee, Rozalina Zakaria, Mohd Adzir Mahdi, Fariza Hanim Suhailin
{"title":"Surface-Enhanced Raman Spectroscopy (SERS) Substrates Based on Photonic Crystal Embedded Bi-Metallic Nanoparticles for Leptospiral DNA Detection.","authors":"Anis Athirah Abdul Razak, Liyana Shatar, Aima Ramli, Syara Kassim, Mohd Sabri Mohd Ghazali, Hui Yee Chee, Rozalina Zakaria, Mohd Adzir Mahdi, Fariza Hanim Suhailin","doi":"10.1177/00037028241303780","DOIUrl":"https://doi.org/10.1177/00037028241303780","url":null,"abstract":"<p><p>Leptospirosis is an acute bacterial febrile disease affecting humans and animals in many tropical and subtropical countries. This work presents an optimization of surface-enhanced Raman spectroscopy (SERS) substrates to probe vibrational spectroscopic detail from <i>Leptospira</i> deoxyribonucleic acid (DNA). The pathogenic gene of LipL32 was used as a biomarker. The SERS substrates were based on a photonic crystal (PC) structure embedded with bi-metallic gold and silver nanoparticles (PC@AuAg NPs). The localized plasmonic resonance of AuAg NPs was coupled to the Raman modes of the target through SERS interaction. Prior to detection, the AuAg NPs were functionalized with chemical linkers to facilitate specific conjugation between metallic surfaces and DNA biomolecules. The immobilization and hybridization of probe DNA to their complementary target DNA (cDNA) created duplex formation for detection. The configuration was also tested with non-complementary DNA to verify detection specificity. Prominent SERS peaks were recorded, and the characteristic intensity decreased after cDNA hybridization due to less base interaction after complementary pairing. Distinct SERS behavior from the negative control test was also observed in non-complementary interaction. The configuration is highly attractive and can be potentially extended for sensitive and label-free detection of leptospiral DNA, paving the way for alternative diagnosis of leptospirosis.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241303780"},"PeriodicalIF":2.2,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symmetric Non-Monochromatic Light as Reference in Fourier Transform Spectrometers.","authors":"Muqian Wen","doi":"10.1177/00037028241305415","DOIUrl":"https://doi.org/10.1177/00037028241305415","url":null,"abstract":"<p><p>Fourier transform spectrometers typically use a presumed monochromatic reference source to track and correct errors in optical path difference changes. This paper will conduct a theoretical analysis to show that non-monochromatic light sources with symmetric spectral profiles can also be used as reference sources without adding errors. An experiment was carried out using a symmetric broadband superluminescent diode (SLED) as reference light to measure the spectrum of some other SLED light sources to experimentally demonstrate this finding.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241305415"},"PeriodicalIF":2.2,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical Calculation and Simulation of Peak Distortion of Absorption Spectra of Complex Mixtures.","authors":"Rui Cheng, Thomas G Mayerhöfer, Johannes Kiefer","doi":"10.1177/00037028241297179","DOIUrl":"https://doi.org/10.1177/00037028241297179","url":null,"abstract":"<p><p>Attenuated total reflection (ATR) spectroscopy in infrared is a standard tool used in most analytical labs, as it allows a rapid chemical analysis with virtually no sample preparation. However, when the sample contains materials with a high refractive index, special care must be taken as the resulting data may be severely biased. This article reports a theoretical approach to correcting distorted ATR spectra. Starting from Snell's law, Lorenz model and Fresnel's equations are combined to obtain the complex relationship between optical constants. With calculating the real and imaginary parts, that is, <math><mi>n</mi><mo>(</mo><mi>ν</mi><mo>)</mo></math> and <math><mi>k</mi><mo>(</mo><mi>ν</mi><mo>)</mo></math>, respectively, of the complex refractive index from the absorption spectrum, a model for mixtures comprising of a liquid and a solid is established. The effects of distortion and potential misinterpretation of the data are discussed. Proof-of-concept experiments with mixtures of carbonaceous materials and toluene confirm the theoretically predicted observations.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241297179"},"PeriodicalIF":2.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo Wang, Pu Zhang, Wei Zhao, Wenzhen Ren, Xiangping Zhu, Ying Jiao, Qi Liao, Zhen Yao
{"title":"Triplet Network for One-Shot Raman Spectrum Recognition.","authors":"Bo Wang, Pu Zhang, Wei Zhao, Wenzhen Ren, Xiangping Zhu, Ying Jiao, Qi Liao, Zhen Yao","doi":"10.1177/00037028241297180","DOIUrl":"https://doi.org/10.1177/00037028241297180","url":null,"abstract":"<p><p>Raman spectroscopy is widely used for material detection due to its specificity, but its application to spectral recognition often faces limitations due to insufficient training data, unlike fields such as image recognition. Traditional machine learning or basic neural networks are commonly used, but they have limited ability to achieve high precision. We have proposed a novel approach that combines the Triplet network (TN) and K-nearest neighbor (KNN) techniques to address this issue. TN maps the Raman spectral sequences to a 128-dimensional Euclidean space to extract features, enabling the features in the new space to more accurately represent the similarities or differences between spectra, and then utilizes the KNN algorithm to perform classification tasks in this feature space. Our method exhibits superior performance in recognizing unknown Raman spectra with minimal training samples per class. We employed a handheld Raman spectrometer with an excitation wavelength of 785 nm to collect the Raman spectra of 36 samples, including 28 safe materials and eight hazardous materials. Using only one spectrum as a support set for each category, the hazardous samples were successfully distinguished from the safe samples with an accuracy of 99.6%. Additionally, our model offers adaptability without requiring exhaustive retraining when adding new prediction classes. In situations with high background fluorescence, the TN performs better in measuring the distance between spectra of the same class than traditional distance measurement methods.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241297180"},"PeriodicalIF":2.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hadi Barati, Arian Mousavi Madani, Sorena Shadzinavaz, Mehdi Fardmanesh
{"title":"Principal Component Analysis and Near-Infrared Spectroscopy as Noninvasive Blood Glucose Assay Methods.","authors":"Hadi Barati, Arian Mousavi Madani, Sorena Shadzinavaz, Mehdi Fardmanesh","doi":"10.1177/00037028241300535","DOIUrl":"https://doi.org/10.1177/00037028241300535","url":null,"abstract":"<p><p>In this paper, a new model is presented for estimation of the blood glucose level from the measured near-infrared absorbance. The model has been developed in such a way that the regression coefficients of this linear relation have been approximated by considering only the molar absorptivity of the glucose and the obtained coefficients have been utilized to estimate the blood glucose levels from the measured absorbances. The estimation of the blood glucose concentrations by this blind approach exhibited an acceptable accuracy in comparison to the more accurate principal components regression method. The blood sample absorbances have been measured using a Fourier transform infrared device while the blood glucose levels have been determined by a commercial finger-prick glucometer device.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241300535"},"PeriodicalIF":2.2,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David M Malakauskas, Hongjian Ding, Ben P Berman, Nap Thantu, Kevin L Karem, Victoria M Gammino
{"title":"Shortwave Infrared Hyperspectral Imaging to Detect Contaminants in the U.S. Food Supply.","authors":"David M Malakauskas, Hongjian Ding, Ben P Berman, Nap Thantu, Kevin L Karem, Victoria M Gammino","doi":"10.1177/00037028241301089","DOIUrl":"https://doi.org/10.1177/00037028241301089","url":null,"abstract":"<p><p>The U.S. Food and Drug Administration (FDA) ensures the safety of the nation's food supply using sampling and laboratory analysis of imported and domestic foods. Accurate detection and identification of extraneous filth elements in inspected food samples is critical in producing evidence for regulatory decision-making. As part of ongoing efforts to increase the efficiency and accuracy of data collection, to better inform regulatory decision-making, scientists at the FDA have been exploring the application of emerging imaging technologies. To this end, we tested the ability of shortwave infrared (SWIR) hyperspectral image analysis to simultaneously detect and identify filth elements from a variety of chemically digested single- and multiple-ingredient food matrices. We tested five stored-product beetle species on a background of four different food matrix types. Our analyses successfully detected whole beetles and fragments as small as 0.65 mm in 95% of samples. All beetle species tested were accurately detected from the background matrices, and initial classification results show identification to genus. Our results show that SWIR spectral image analysis is a very promising technology for application in the detection and identification of filth elements in food products in a regulatory context and further development has the potential to increase analytical efficiency at FDA regulatory labs.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241301089"},"PeriodicalIF":2.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied SpectroscopyPub Date : 2024-12-01Epub Date: 2024-08-02DOI: 10.1177/00037028241267925
Giulia Spaggiari, Roberto Fornari, Piero Mazzolini, Francesco Mezzadri, Antonella Parisini, Matteo Bosi, Luca Seravalli, Francesco Pattini, Maura Pavesi, Andrea Baraldi, Stefano Rampino, Anna Sacchi, Danilo Bersani
{"title":"Raman Spectroscopy as an Effective Tool for Assessment of Structural Quality and Polymorphism of Gallium Oxide (Ga<sub>2</sub>O<sub>3</sub>) Thin Films.","authors":"Giulia Spaggiari, Roberto Fornari, Piero Mazzolini, Francesco Mezzadri, Antonella Parisini, Matteo Bosi, Luca Seravalli, Francesco Pattini, Maura Pavesi, Andrea Baraldi, Stefano Rampino, Anna Sacchi, Danilo Bersani","doi":"10.1177/00037028241267925","DOIUrl":"10.1177/00037028241267925","url":null,"abstract":"<p><p>Raman spectroscopy, a versatile and nondestructive technique, was employed to develop a methodology for gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) phase detection and identification. This methodology combines experimental results with a comprehensive literature survey. The established Raman approach offers a powerful tool for nondestructively assessing phase purity and detecting secondary phases in Ga<sub>2</sub>O<sub>3</sub> thin films. X-ray diffraction was used for comparison, highlighting the complementary information that these techniques may provide for Ga<sub>2</sub>O<sub>3</sub> characterization. Few case studies are included to demonstrate the usefulness of the proposed spectroscopic approach, namely the impact of deposition conditions such as metal-organic vapor-phase epitaxy and pulsed electron deposition (PED), and extrinsic elements provided during growth (Sn in the case of PED) on Ga<sub>2</sub>O<sub>3</sub> polymorphism. In conclusion, it is shown that Raman spectroscopy offers a quick, reliable, and nondestructive high-resolution approach for Ga<sub>2</sub>O<sub>3</sub> thin film characterization, especially concerning phase detection and crystalline quality.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1307-1315"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied SpectroscopyPub Date : 2024-12-01Epub Date: 2024-09-24DOI: 10.1177/00037028241267325
Irene Bargagli, Martina Alunni Cardinali, Valeria Di Tullio, Brenda Doherty, Marco Paolantoni, Daniele Fioretto, Noemi Proietti, Francesca Sabatini, Costanza Miliani, Elisa Storace, Sara Russo, Rafaela Trevisan, Alessandra Vannini, Laura Cartechini, Lucia Comez, Francesca Rosi
{"title":"Assessing Mechanochemical Properties of Acrylonitrile Butadiene Styrene (ABS) Items in Cultural Heritage Through a Multimodal Spectroscopic Approach.","authors":"Irene Bargagli, Martina Alunni Cardinali, Valeria Di Tullio, Brenda Doherty, Marco Paolantoni, Daniele Fioretto, Noemi Proietti, Francesca Sabatini, Costanza Miliani, Elisa Storace, Sara Russo, Rafaela Trevisan, Alessandra Vannini, Laura Cartechini, Lucia Comez, Francesca Rosi","doi":"10.1177/00037028241267325","DOIUrl":"10.1177/00037028241267325","url":null,"abstract":"<p><p>A multimodal spectroscopic approach is proposed to correlate the mechanical and chemical properties of plastic materials in art and design objects, at both surface and subsurface levels, to obtain information about their conservation state and to monitor their degradation. The approach was used to investigate the photo-oxidation of acrylonitrile butadiene styrene (ABS), a plastic commonly found in many artistic and design applications, using ABS-based LEGO bricks as model samples. The modifications of the chemical and viscoelastic properties of ABS during photoaging were monitored by correlative Brillouin and Raman microspectroscopy (BRaMS), combined with portable and noninvasive broad-range external reflection infrared (IR) spectroscopy and nuclear magnetic resonance (NMR) relaxometry, directly applicable in museums. BRaMS enabled combined measurements of Brillouin light scattering and Raman spectroscopy in a microspectroscopic setup, providing for the coincident probe of the chemical and mechanical changes of ABS at the sample surface. NMR relaxometry allowed for noninvasive measurements of relaxation times and depth profiles which are directly related to the molecular mobility of the material. Complementary chemical information was acquired by external reflection IR spectroscopy. The simultaneous probe of the chemical and mechanical properties by this multimodal spectroscopic approach enabled us to define a decay model of ABS in terms of compositional changes and variation of stiffness and rigidity occurring with photodegradation. The knowledge acquired on LEGO samples has been used to rate the conservation state of ABS design objects noninvasively investigated by external reflection Fourier transform IR spectroscopy and NMR relaxometry offered by the MObile LABoratory (MOLAB) platform of the European Research Infrastructure of Heritage Science.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1316-1328"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied SpectroscopyPub Date : 2024-12-01Epub Date: 2024-09-05DOI: 10.1177/00037028241277575
Riccardo Dal Moro, Fabio Melison, Lorenzo Cocola, Luca Poletto
{"title":"Raman Spectroscopy for Temporally Resolved Combustion Gas Diagnostics.","authors":"Riccardo Dal Moro, Fabio Melison, Lorenzo Cocola, Luca Poletto","doi":"10.1177/00037028241277575","DOIUrl":"10.1177/00037028241277575","url":null,"abstract":"<p><p>A novel approach for cost-effective and temporally resolved in-line combustion gas diagnostics based on spontaneous Stokes Raman spectroscopy is presented in this paper. The proposed instrument uses a multipass configuration designed to increase the scattering generation, giving information about gas species concentrations, including H<sub>2</sub> and N<sub>2</sub> that are not commonly available from analysis with absorption spectroscopy techniques. The system performs calibrated analysis providing both qualitative and quantitative information about the gas composition. Depending on the application, the device can work with spectra integration time from 0.15 s up to 10 s, with a Raman spectrum ranging from the H<sub>2</sub> rotational peak at Raman shift of 587 cm<sup>-1</sup> up to the H<sub>2</sub> vibrational peak at 4156 cm<sup>-1</sup>, covering all the Raman emissions of major combustion species. The device response was characterized by a working pressure from 0.7 to 7.5 bar. The instrument prototype has been made completely transportable, designed to operate using a gas sampling system, and ready to be operated in relevant industrial in-line environments.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1263-1269"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied SpectroscopyPub Date : 2024-12-01Epub Date: 2024-09-30DOI: 10.1177/00037028241278903
Martina Alunni Cardinali, Marco Govoni, Sara Stefani, Alessandra Maso, Elisa Storni, Francesca Valenti, Melania Maglio, Assunta Morresi, Daniele Fioretto, Dante Dallari, Paola Sassi
{"title":"Combining Multiple Spectroscopic Techniques to Reveal the Effects of <i>Staphylococcus aureus</i> Infection on Human Bone Tissues.","authors":"Martina Alunni Cardinali, Marco Govoni, Sara Stefani, Alessandra Maso, Elisa Storni, Francesca Valenti, Melania Maglio, Assunta Morresi, Daniele Fioretto, Dante Dallari, Paola Sassi","doi":"10.1177/00037028241278903","DOIUrl":"10.1177/00037028241278903","url":null,"abstract":"<p><p>Osteomyelitis (OM) and periprosthetic joint infections (PJIs) are major public health concerns in Western countries due to increased life expectancy. Infections usually occur due to bacterial spread through fractures, implants, or blood-borne transmission. The pathogens trigger an inflammatory response that hinders bone tissue regeneration. Treatment requires surgical intervention, which involves the precise removal of infected tissue, wound cleansing, and local and systemic antibiotic administration. <i>Staphylococcus aureus</i> (SA) is one of the most common pathogens causing infection-induced OM and PJIs. It forms antimicrobial-resistant biofilms and is frequently found in healthcare settings. In this proof-of-concept, we present an approach based on multiple spectroscopic techniques aimed at investigating the effects of SA infection on bone tissue, as well as identifying specific markers useful to detect early bacterial colonization on the tissue surface. A cross-section of a human femoral diaphysis, with negative-culture results, was divided into three parts, and the cortical and trabecular regions were separated from each other. Two portions of each bone tissue type were infected with SA for one and seven days, respectively. Multiple techniques were used to investigate the impact of the infection on bone tissue, Brillouin-Raman microspectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were employed to assess and develop a new noninvasive diagnostic method to detect SA by targeting the bone of the host. The results indicate that exposure to SA infection significantly alters the bone structure, especially in the case of the trabecular type, even after just one day. Moreover, Raman spectral markers of the tissue damage were identified, indicating that this technique can detect the effect of the pathogens' presence in bone biopsies and pave the way for potential application during surgery, due to its nondestructive and contactless nature.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1295-1306"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}