Applied Spectroscopy最新文献

筛选
英文 中文
Local Modeling by Adapting Source Calibration Models to Analyte Shifted Target Domain Samples Without Reference Values. 通过调整源校准模型以适应无参考值的分析物偏移目标域样本来进行局部建模。
IF 2.2 3区 化学
Applied Spectroscopy Pub Date : 2024-09-01 Epub Date: 2024-06-05 DOI: 10.1177/00037028241241557
Jordan M J Peper, John H Kalivas
{"title":"Local Modeling by Adapting Source Calibration Models to Analyte Shifted Target Domain Samples Without Reference Values.","authors":"Jordan M J Peper, John H Kalivas","doi":"10.1177/00037028241241557","DOIUrl":"10.1177/00037028241241557","url":null,"abstract":"<p><p>Spectral multivariate calibration aims to derive models characterizing mathematical relationships between sample analyte amounts and corresponding spectral responses. These models are effective at predicting target domain sample analyte amounts when target samples are within the analyte and spectral calibration source domain. Models fail when target samples shift (analyte amounts and/or spectra) from the original calibration domain model. A total recalibration solution requires acquisition of new sample reference values and spectra. However, obtaining enough reference values to distinguish the target domain may be challenging or expensive. A simpler approach adapts the original model to the target domain using target sample spectra without analyte reference values (unlabeled). Analytical chemists have developed several machine learning algorithms using unlabeled regression domain adaptation processes. Unfortunately, prediction accuracy declines for these methods depending on how much the target domain analyte distribution has shifted from the calibration distribution, and regression transfer learning methods are instead needed. Regression domain adaptation and transfer learning are often referred to as model updating in analytical chemistry, but regression domain adaptation only applies to spectral shifts. The regression transfer learning method presented in this paper named null augmentation regression constant analyte (NARCA) leverages unlabeled repeat spectra of a single target sample to update an original calibration model to the shifted target domain sample. With sample repeat spectra, the analyte amount can be assumed constant or nearly constant for NARCA and because models are formed for one sample, NARCA operates as a local modeling method. The performance of NARCA as a regression transfer learning method is evaluated using five near-infrared data sets.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"922-932"},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H-Aggregation of Squaraine Dye as Generic Colorimetric Molecules to Detect Cu2. H-Aggregation of Squaraine Dye as Generative Colorimetric Molecules to Detect Cu2.
IF 2.2 3区 化学
Applied Spectroscopy Pub Date : 2024-09-01 Epub Date: 2024-05-21 DOI: 10.1177/00037028241254391
Lijia Yu, Xi Liu, Shuhua Zhao, Wenxuan Zhu, Lina Wu, Chunguang Ding
{"title":"H-Aggregation of Squaraine Dye as Generic Colorimetric Molecules to Detect Cu<sup>2</sup>.","authors":"Lijia Yu, Xi Liu, Shuhua Zhao, Wenxuan Zhu, Lina Wu, Chunguang Ding","doi":"10.1177/00037028241254391","DOIUrl":"10.1177/00037028241254391","url":null,"abstract":"<p><p>An infrared squaraine dye was utilized to detect Cu<sup>2+</sup> in solvents based on H-aggregates of squaraine dye. H-aggregates are a type of aggregation with enhanced photophysical properties compared to monomers. In the presence of a Ca<sup>2+</sup> solution, F-Cl offers exceptional H-aggregators that can be transformed into monomers by adding Cu<sup>2+</sup>. Furthermore, this mode successfully demonstrated fluorescence changes in HeLa cells cultured in vitro after the addition of Ca<sup>2+</sup> or Cu<sup>2+</sup>. A highly specific detection of Cu<sup>2+</sup> was achieved using this transformation mode.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"974-981"},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141075090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differentiating Nylon Samples with Visually Indistinguishable Fluorescence Using Principal Component Analysis and Common Dimension Partial Least Squares Linear Discriminant Analysis with Synchronous Fluorescence Spectroscopy. 利用主成分分析和共维偏最小二乘法线性判别分析与同步荧光光谱法区分具有肉眼难以区分的荧光的尼龙样品。
IF 2.2 3区 化学
Applied Spectroscopy Pub Date : 2024-09-01 Epub Date: 2024-05-22 DOI: 10.1177/00037028241255150
Noah M Froelich, Silvana M Azcarate, Héctor C Goicoechea, Andrés D Campiglia
{"title":"Differentiating Nylon Samples with Visually Indistinguishable Fluorescence Using Principal Component Analysis and Common Dimension Partial Least Squares Linear Discriminant Analysis with Synchronous Fluorescence Spectroscopy.","authors":"Noah M Froelich, Silvana M Azcarate, Héctor C Goicoechea, Andrés D Campiglia","doi":"10.1177/00037028241255150","DOIUrl":"10.1177/00037028241255150","url":null,"abstract":"<p><p>Fluorescence spectroscopy is an attractive candidate for analyzing samples of nylon. Impurities within the polymers formed during the synthesis and processing of nylons give rise to the observed fluorescence, allowing for nylons to be analyzed based on their impurities. Nylons from the same source are expected to display similar fluorescence profiles, and nylons with different fluorescence are expected to be from different sources. This paper investigates an important case where different nylons displayed similar fluorescence, preventing easy discrimination. Samples of Nylon 6 and Nylon 6/12 had visually indistinguishable excitation-emission matrices (EEM), excitation spectra, fluorescence spectra, and synchronous fluorescence spectra at larger Δλ. By collecting synchronous fluorescence spectra at smaller Δλ, additional features in the fluorescence profiles were identified that allowed for some discrimination between the two nylons. Combining the EEM and synchronous fluorescence data with chemometric algorithms provided a clearer differentiation between the two nylons. parallel factor analysis, principal component analysis, and common dimension partial least squares (ComDim-PLS) showed two distinct clusters in the data, with ComDim-PLS providing the greatest distinction between the clusters. The loadings revealed the variables of interest to the ComDim-PLS were the 400 nm and 335 nm bands for all synchronous fluorescence spectra, the 460 nm and 310 nm bands for the Δλ = 20 nm and Δλ = 30 nm synchronous fluorescence spectra, and the 440 nm band for the Δλ = 20 nm synchronous fluorescence spectra. The linear discriminant analysis performed with the PLS data yielded a classification accuracy of 95% with the EEM data and 100% with the synchronous fluorescence data, displaying the power of this technique to differentiate two different nylons with visually indistinguishable fluorescence spectra.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"962-973"},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141075088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Near Infrared-Dye Colored Fabrics Using Hyperspectral Imaging. 利用高光谱成像技术表征近红外染料染色织物。
IF 2.2 3区 化学
Applied Spectroscopy Pub Date : 2024-09-01 Epub Date: 2024-06-17 DOI: 10.1177/00037028241258111
Rajbir Kaur, Muhammad Mudassir Arif Chaudhry, Catherine Findlay, Mohammad Nadimi, Mashiur Rahman, Jitendra Paliwal
{"title":"Characterization of Near Infrared-Dye Colored Fabrics Using Hyperspectral Imaging.","authors":"Rajbir Kaur, Muhammad Mudassir Arif Chaudhry, Catherine Findlay, Mohammad Nadimi, Mashiur Rahman, Jitendra Paliwal","doi":"10.1177/00037028241258111","DOIUrl":"10.1177/00037028241258111","url":null,"abstract":"<p><p>Near-infrared (NIR) dyes have a unique ability to interact favorably with light in the NIR region, which is particularly interesting where stealth and camouflage are paramount, such as in military uniforms. Characterization of cotton fabric dyed with NIR-absorbing dyes using visible-NIR (Vis-NIR) and short-wave infrared (SWIR) hyperspectral imaging was done. The aim of the study was to discern spectral changes caused by variations in dye concentration and dyeing temperature as these parameters directly influence color- and crocking-fastness of fabrics impacting the camouflage effect. The fabric was dyed at three concentrations (2.5, 5, and 10%) and two dyeing temperatures (55 °C and 85 °C) and principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed on the spectra to discriminate the fabrics based on dye concentrations. The PCA models successfully segregated the fabrics based on the dye concentration and dyeing temperature, while PLS-DA models demonstrated classification accuracies between 75 and 100% in the Vis-NIR range. Spectra in the SWIR region could not be used to detect the differences in the concentrations of the NIR dyes. This finding is promising, as it aligns with the objective of creating NIR-dyed camouflage fabrics that remain indistinguishable under varying dye concentrations. These results open possibilities for further exploration in enhancing the stealth capabilities of textiles in military applications.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"951-961"},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical and Practical Considerations of Spatially Offset Raman Spectroscopy (SORS) and Micro-SORS. 表达:空间偏移拉曼光谱(SORS)和微 SORS 的理论和实践考虑。
IF 2.2 3区 化学
Applied Spectroscopy Pub Date : 2024-08-14 DOI: 10.1177/00037028241270263
Alberto Lux, Claudia Conti, Alessandra Botteon, Sara Mosca, Pavel Matousek
{"title":"Theoretical and Practical Considerations of Spatially Offset Raman Spectroscopy (SORS) and Micro-SORS.","authors":"Alberto Lux, Claudia Conti, Alessandra Botteon, Sara Mosca, Pavel Matousek","doi":"10.1177/00037028241270263","DOIUrl":"10.1177/00037028241270263","url":null,"abstract":"<p><p>Spatially offset Raman spectroscopy (SORS) is typically used to non-invasively investigate stratified samples that possess features on a millimeter scale, whereas micro-SORS usually deals with micrometer-thick layered samples. However, there are many instances where these boundaries are intertwined, sometimes indicating the possibility of using both techniques as well as circumstances that present mutual exclusion to their applicability. The aim of this study is to establish an application protocol that provides better insight into their suitability for deployment in various scenarios. The differences and similarities between the two approaches are investigated highlighting their strengths and limitations considering both theoretical and practical aspects. Diverse available parameters entail prospects and restrictions of both techniques and give rise to specific instrumental effects, namely, the overlap between the collection and excitation areas, the percentage of collected area for a given spatial offset, and the accuracy in the definition of the spatial offset (spread effect). These aspects are studied and exemplified on mockup samples relevant to the field of cultural heritage. The samples are characterized by high compositional complexity comprising features ranging from micrometer to millimeter scales. The conclusions reached are also relevant to other scientific areas such as biomedical, forensic, or energy harvest.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241270263"},"PeriodicalIF":2.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can Two-Dimensional Correlation Spectroscopy (2D-COS) Indicate Biocompatible Material? 快讯:二维相关光谱学 (2D-COS) 能否指示生物相容性材料?
IF 2.2 3区 化学
Applied Spectroscopy Pub Date : 2024-08-12 DOI: 10.1177/00037028241268223
Aleksandra Wesełucha-Birczyńska, Elżbieta Długoń, Krzysztof Morajka, Marta Błażewicz
{"title":"Can Two-Dimensional Correlation Spectroscopy (2D-COS) Indicate Biocompatible Material?","authors":"Aleksandra Wesełucha-Birczyńska, Elżbieta Długoń, Krzysztof Morajka, Marta Błażewicz","doi":"10.1177/00037028241268223","DOIUrl":"10.1177/00037028241268223","url":null,"abstract":"<p><p>Carbon nanofibers are a new type of carbon materials. One of the methods of obtaining them is the carbonization of a polymer precursor. They are attractive in many areas, including medicine, due to the possibility of modifying their properties in a wide range. For example, the conditions of the carbonization process result in the creation of materials with designed structures and surface parameters. In the current work, the nanoprecursor was polyacrylonitrile (PAN) fibers. Two types of carbon fibers obtained by carbonization of the PAN precursor at 1000 °C were tested. The first electrospun carbon nanofibers (ESCNFs) were cytotoxic, while the second ESCNF-f were biocompatible after functionalization. The parameters obtained from Raman tests did not clearly discriminate between the tested materials. Multiwavelength Raman studies, analyzed using the two-dimensional correlation spectroscopy (2D-COS), treating the laser energy as an external disturbance, showed a difference between both fibrous structures. 2D-COS indicates that structures resembling graphite systems, devoid of disordered carbon forms, are nontoxic.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241268223"},"PeriodicalIF":2.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nondispersive Ultraviolet Visible Gas Analyzer for Monitoring Molybdenum Chloride and Oxychloride Precursors During Vapor Deposition Processes. EXPRESS:用于在气相沉积过程中监测氯化钼和氧氯化钼前体的非分散紫外-可见气体分析仪。
IF 2.2 3区 化学
Applied Spectroscopy Pub Date : 2024-08-12 DOI: 10.1177/00037028241268260
James E Maslar, Berc Kalanyan
{"title":"Nondispersive Ultraviolet Visible Gas Analyzer for Monitoring Molybdenum Chloride and Oxychloride Precursors During Vapor Deposition Processes.","authors":"James E Maslar, Berc Kalanyan","doi":"10.1177/00037028241268260","DOIUrl":"10.1177/00037028241268260","url":null,"abstract":"<p><p>Nondispersive ultraviolet visible gas analyzer designs were evaluated for monitoring molybdenum-containing chloride and oxychloride precursor delivery during microelectronics vapor deposition processes. The performances of three analyzer designs, which differed only in the bandpass filter employed for wavelength selection, were compared for measuring the partial pressure of molybdenum pentachloride, molybdenum oxytetrachloride (MoOCl<sub>4</sub>), and molybdenum dioxydichloride (MoO<sub>2</sub>Cl<sub>2</sub>). The analyzer's optical response with a 369 nm center wavelength filter for molybdenum pentachloride was determined by measuring the molybdenum pentachloride absorbance as a function of vapor molar density. The calibrated analyzer was transferred to a process line on a deposition chamber and used to measure the molybdenum pentachloride partial pressure during delivery in a flowing carrier gas. The molybdenum pentachloride minimum detectable density was determined to be 1 × 10<sup>-4</sup> mol m<sup>-3</sup> (0.35 Pa for a cell temperature of 145 °C), for data collected at 1 kHz and referenced to a 0.2 s duration background. The analyzer optical response for molybdenum pentachloride with the two other filters and the response for MoOCl<sub>4</sub> and MoO<sub>2</sub>Cl<sub>2</sub> with all three filters were simulated with a simple model. These data were used to evaluate the sensitivity and selectivity of analyzers incorporating the different filters to some likely combinations of analytes and interferents.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241268260"},"PeriodicalIF":2.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding Advanced Attenuated Total Reflection Correction: The Low Absorbance Assumption. EXPRESS:了解高级衰减全反射校正:低吸收率假设。
IF 2.2 3区 化学
Applied Spectroscopy Pub Date : 2024-08-11 DOI: 10.1177/00037028241268024
Thomas G Mayerhöfer, Jürgen Popp
{"title":"Understanding Advanced Attenuated Total Reflection Correction: The Low Absorbance Assumption.","authors":"Thomas G Mayerhöfer, Jürgen Popp","doi":"10.1177/00037028241268024","DOIUrl":"10.1177/00037028241268024","url":null,"abstract":"<p><p>We present an attenuated total reflection (ATR) correction scheme capable of rectifying ATR spectra while considering the polarization state for arbitrary angles of incidence, provided that this angle exceeds the critical angle for the entire ATR spectrum. Due to its reliance on the weak absorption approximation, it cannot achieve perfect correction of the ATR spectra. However, comprehending its functionality may offer valuable insights into the concept behind the weak absorption approximation. Depending on the specific polarization state of an instrument accessory combination, this correction scheme may outperform the proprietary advanced ATR correction authored by ThermoFisher while being as user-friendly, but in contrast to the latter completely transparent with regard to its functionality.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241268024"},"PeriodicalIF":2.2,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active Surface-Enhanced Raman Spectroscopy (SERS): A Novel Concept for Enhancing Signal Contrast in Complex Matrices Using External Perturbation. EXPRESS:主动表面增强拉曼光谱(SERS):利用外部扰动增强复杂基质中信号对比度的新概念。
IF 2.2 3区 化学
Applied Spectroscopy Pub Date : 2024-08-07 DOI: 10.1177/00037028241267898
Sara Mosca, Megha Mehta, William H Skinner, Benjamin Gardner, Francesca Palombo, Nicholas Stone, Pavel Matousek
{"title":"Active Surface-Enhanced Raman Spectroscopy (SERS): A Novel Concept for Enhancing Signal Contrast in Complex Matrices Using External Perturbation.","authors":"Sara Mosca, Megha Mehta, William H Skinner, Benjamin Gardner, Francesca Palombo, Nicholas Stone, Pavel Matousek","doi":"10.1177/00037028241267898","DOIUrl":"10.1177/00037028241267898","url":null,"abstract":"<p><p>Noninvasive detection of surface-enhanced Raman spectroscopy (SERS) signals from deep within tissue represents a common challenge in many biological and clinical applications including disease diagnosis and therapy monitoring. Such signals are typically weak and not readily discernible from often much larger Raman and fluorescence background signals (e.g., from surrounding tissue). Consequently, suboptimal sensitivity in the detection of SERS signals is often achieved in these situations. Similar issues can arise in SERS measurements in other diffusely scattering samples and complex matrices. Here, we propose a novel concept, active SERS, for the efficient retrieval of SERS signals from deep within complex matrices such as biological tissues that mitigates these issues. It relies on applying an external perturbation to the sample to alter the SERS signal from nanoparticles (NPs) deep inside the matrix. A measurement with and without, or before and after, such perturbation then can provide powerful contrasting data enabling an effective elimination of the matrix signals to reveal more clearly the desired SERS signal without the interfering background and associated artifacts. The concept is demonstrated using ultrasound (US) as an external source of perturbation and SERS NPs inserted deep within a heterogeneous tissue phantom mimicking a cluster of NPs accumulated within a small target lesion. The overall SERS signal intensity induced by the applied US perturbation decreased by ∼21% and the SERS signal contrast was considerably improved by eliminating subtraction artifacts present in a conventional measurement performed at a neighboring spatial location in a heterogeneous tissue sample. Although the technique was demonstrated with SERS gold NPs with a standard Raman label, it is envisaged that active SERS NPs (both the nanoscale metal geometry and Raman label) could be specifically designed to deliver an augmented response to the external stimulus to further enhance the achievable SERS signal contrast and yield even greater improvement in detection sensitivity. The method was demonstrated using transmission Raman spectroscopy; however, it is also applicable to other Raman implementations including spatially offset Raman spectroscopy and conventional Raman spectroscopy performed both at depth and at surfaces of complex matrices.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241267898"},"PeriodicalIF":2.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the Adsorption Behavior of Phenanthrene on Microplastics Based on Two-Dimensional Correlation Spectroscopy. 基于二维相关光谱学的菲在微塑料上的吸附行为分析
IF 2.2 3区 化学
Applied Spectroscopy Pub Date : 2024-08-02 DOI: 10.1177/00037028241267326
Jiyuan He, Han Zhang, Renjie Yang, Jianmin Jin, Minyue Huang, Yiyang Qin, Guimei Dong, Fan Yang, Yanrong Yang
{"title":"Analysis of the Adsorption Behavior of Phenanthrene on Microplastics Based on Two-Dimensional Correlation Spectroscopy.","authors":"Jiyuan He, Han Zhang, Renjie Yang, Jianmin Jin, Minyue Huang, Yiyang Qin, Guimei Dong, Fan Yang, Yanrong Yang","doi":"10.1177/00037028241267326","DOIUrl":"https://doi.org/10.1177/00037028241267326","url":null,"abstract":"<p><p>Microplastics (MPs), an emerging pollutant, widely co-occur with polycyclic aromatic hydrocarbons (PAHs) in the environment. Therefore, the interaction between MPs and PAHs has been the focus of much attention in recent years. In this study, three types of MPs, i.e., polypropylene, polystyrene, and poly(vinyl chloride), with the same main chain were selected as the adsorbents, with phenanthrene (PHE) as the representative PAHs. The adsorption mechanisms were explored from the perspective of the molecular spectral level using a combination of Fourier transform infrared spectroscopy (FT-IR) with a two-dimensional correlation technique. The adsorption kinetics results showed that the adsorption of PHE on the three MPs was dominated by chemisorption. However, the FT-IR analysis results indicated that no new covalent bond was created during the adsorption process. Based on the above research, a generalized two-dimensional (2D) correlation spectral technique was employed to investigate the sequence of functional group changes during the adsorption process for different MPs. Furthermore, the hybrid 2D correlation spectral technique explored the effect of side groups attached to the main chain molecules of MPs on adsorption. The results showed that for all three MPs, the functional groups in the side chain have a higher affinity for PHE, which is due to their higher hydrophobicity. This study provides a feasible way to analyze the adsorption of pollutants on MPs, and the results are important for understanding the adsorption interaction between PAHs and MPs in the aquatic environment.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241267326"},"PeriodicalIF":2.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信