Comparison of a Quantum Cascade Laser and an Interband Cascade Laser for the Detection of Stable Carbon Dioxide Isotopes Using Tunable Laser Absorption Spectroscopy.
Ponkanok Nitzsche, Cem Dinc, Jens Goldschmidt, Leonard Nitzsche, Jürgen Wöllenstein, Katrin Schmitt
{"title":"Comparison of a Quantum Cascade Laser and an Interband Cascade Laser for the Detection of Stable Carbon Dioxide Isotopes Using Tunable Laser Absorption Spectroscopy.","authors":"Ponkanok Nitzsche, Cem Dinc, Jens Goldschmidt, Leonard Nitzsche, Jürgen Wöllenstein, Katrin Schmitt","doi":"10.1177/00037028241291157","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum cascade lasers (QCLs) and interband cascade lasers (ICLs) are widely used as light sources in tunable laser absorption spectroscopy because they emit in the mid-infrared region where many strong and characteristic absorption bands are present. In this paper, we compare the performance of these lasers emitting at about 2310.1 cm<sup>-1</sup> to determine an optimal light source for detecting isotopic ratios of carbon dioxide (CO<sub>2</sub>). Our results show that the QCL has a higher relative intensity noise of up to 15 dBc/Hz compared to the ICL over the entire measured frequency range. In addition, it has a higher frequency fluctuation. However, the maximum tuning range of the QCL is up to 5.2 cm<sup>-1</sup> compared to up to 3.8 cm<sup>-1</sup> for the ICL. Both lasers lose more than half of their tuning range when the tuning rate is increased to 10 kHz. When measuring the isotope ratio of CO<sub>2</sub>, an uncertainty in the <math><msup><mi>δ</mi><mn>13</mn></msup></math> value of <math><msubsup><mi>σ</mi><mrow><mrow><mn>13</mn><mi>C</mi><mo>,</mo><mi>min</mi></mrow></mrow><mrow><mrow><mi>ICL</mi></mrow></mrow></msubsup><mo>=</mo><mn>0.17</mn></math>‰ was achieved with the ICL and of <math><msubsup><mi>σ</mi><mrow><mrow><mn>13</mn><mi>C</mi><mo>,</mo><mi>min</mi></mrow></mrow><mrow><mrow><mi>QCL</mi></mrow></mrow></msubsup><mo>=</mo><mn>0.42</mn></math>‰ with the QCL, both at an integration time of 0.2 s. In summary, the QCL is more appropriate for applications that require a larger spectral tuning range, such as the measurement of a complex gas mixture, while the ICL has an excellent signal-to-noise ratio and is therefore better suited for applications that require higher precision.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241291157"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241291157","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum cascade lasers (QCLs) and interband cascade lasers (ICLs) are widely used as light sources in tunable laser absorption spectroscopy because they emit in the mid-infrared region where many strong and characteristic absorption bands are present. In this paper, we compare the performance of these lasers emitting at about 2310.1 cm-1 to determine an optimal light source for detecting isotopic ratios of carbon dioxide (CO2). Our results show that the QCL has a higher relative intensity noise of up to 15 dBc/Hz compared to the ICL over the entire measured frequency range. In addition, it has a higher frequency fluctuation. However, the maximum tuning range of the QCL is up to 5.2 cm-1 compared to up to 3.8 cm-1 for the ICL. Both lasers lose more than half of their tuning range when the tuning rate is increased to 10 kHz. When measuring the isotope ratio of CO2, an uncertainty in the value of ‰ was achieved with the ICL and of ‰ with the QCL, both at an integration time of 0.2 s. In summary, the QCL is more appropriate for applications that require a larger spectral tuning range, such as the measurement of a complex gas mixture, while the ICL has an excellent signal-to-noise ratio and is therefore better suited for applications that require higher precision.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”