Sergey G Pavlov, Iris Weber, Ute Böttger, Ulrich Schade, Jörg Fritz
{"title":"有限校准输入下橄榄石成分的预测:中红外反射、拉曼散射和激光诱导等离子体光谱的比较研究。","authors":"Sergey G Pavlov, Iris Weber, Ute Böttger, Ulrich Schade, Jörg Fritz","doi":"10.1177/00037028241305162","DOIUrl":null,"url":null,"abstract":"<p><p>In situ optical analytical spectroscopies offer great geochemical insights due to their capability to resolve the chemical composition of regolith surfaces of rocky celestial bodies. The use of suitable calibration targets improves the precision of mineral determination, which is of critical importance for short-living, low-mobility landers, and enables, in special cases, determination of elemental composition. We investigate the capabilities of three space-relevant optical analytical techniques used for in situ mineralogical analysis, i.e., mid-infrared reflection, Raman light scattering, and laser-induced plasma spectroscopies, to predict the chemical composition of olivine under a limited calibration input, namely using two bulk samples of natural olivine, chemically close to the end-members of the mineral group. We determine the accuracy of the forsterite numbers obtained with each technique and discuss the choice of calibration methods applicable to limited in situ calibration input, which are summarized in recommendations for space instrumentation.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241305162"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Olivine Composition Under Limited Calibration Inputs: Comparative Study of Mid-Infrared Reflection, Raman Scattering, and Laser-Induced Plasma Spectroscopies.\",\"authors\":\"Sergey G Pavlov, Iris Weber, Ute Böttger, Ulrich Schade, Jörg Fritz\",\"doi\":\"10.1177/00037028241305162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In situ optical analytical spectroscopies offer great geochemical insights due to their capability to resolve the chemical composition of regolith surfaces of rocky celestial bodies. The use of suitable calibration targets improves the precision of mineral determination, which is of critical importance for short-living, low-mobility landers, and enables, in special cases, determination of elemental composition. We investigate the capabilities of three space-relevant optical analytical techniques used for in situ mineralogical analysis, i.e., mid-infrared reflection, Raman light scattering, and laser-induced plasma spectroscopies, to predict the chemical composition of olivine under a limited calibration input, namely using two bulk samples of natural olivine, chemically close to the end-members of the mineral group. We determine the accuracy of the forsterite numbers obtained with each technique and discuss the choice of calibration methods applicable to limited in situ calibration input, which are summarized in recommendations for space instrumentation.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"37028241305162\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028241305162\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241305162","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Prediction of Olivine Composition Under Limited Calibration Inputs: Comparative Study of Mid-Infrared Reflection, Raman Scattering, and Laser-Induced Plasma Spectroscopies.
In situ optical analytical spectroscopies offer great geochemical insights due to their capability to resolve the chemical composition of regolith surfaces of rocky celestial bodies. The use of suitable calibration targets improves the precision of mineral determination, which is of critical importance for short-living, low-mobility landers, and enables, in special cases, determination of elemental composition. We investigate the capabilities of three space-relevant optical analytical techniques used for in situ mineralogical analysis, i.e., mid-infrared reflection, Raman light scattering, and laser-induced plasma spectroscopies, to predict the chemical composition of olivine under a limited calibration input, namely using two bulk samples of natural olivine, chemically close to the end-members of the mineral group. We determine the accuracy of the forsterite numbers obtained with each technique and discuss the choice of calibration methods applicable to limited in situ calibration input, which are summarized in recommendations for space instrumentation.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”