Applied SpectroscopyPub Date : 2024-12-01Epub Date: 2024-08-02DOI: 10.1177/00037028241267925
Giulia Spaggiari, Roberto Fornari, Piero Mazzolini, Francesco Mezzadri, Antonella Parisini, Matteo Bosi, Luca Seravalli, Francesco Pattini, Maura Pavesi, Andrea Baraldi, Stefano Rampino, Anna Sacchi, Danilo Bersani
{"title":"Raman Spectroscopy as an Effective Tool for Assessment of Structural Quality and Polymorphism of Gallium Oxide (Ga<sub>2</sub>O<sub>3</sub>) Thin Films.","authors":"Giulia Spaggiari, Roberto Fornari, Piero Mazzolini, Francesco Mezzadri, Antonella Parisini, Matteo Bosi, Luca Seravalli, Francesco Pattini, Maura Pavesi, Andrea Baraldi, Stefano Rampino, Anna Sacchi, Danilo Bersani","doi":"10.1177/00037028241267925","DOIUrl":"10.1177/00037028241267925","url":null,"abstract":"<p><p>Raman spectroscopy, a versatile and nondestructive technique, was employed to develop a methodology for gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) phase detection and identification. This methodology combines experimental results with a comprehensive literature survey. The established Raman approach offers a powerful tool for nondestructively assessing phase purity and detecting secondary phases in Ga<sub>2</sub>O<sub>3</sub> thin films. X-ray diffraction was used for comparison, highlighting the complementary information that these techniques may provide for Ga<sub>2</sub>O<sub>3</sub> characterization. Few case studies are included to demonstrate the usefulness of the proposed spectroscopic approach, namely the impact of deposition conditions such as metal-organic vapor-phase epitaxy and pulsed electron deposition (PED), and extrinsic elements provided during growth (Sn in the case of PED) on Ga<sub>2</sub>O<sub>3</sub> polymorphism. In conclusion, it is shown that Raman spectroscopy offers a quick, reliable, and nondestructive high-resolution approach for Ga<sub>2</sub>O<sub>3</sub> thin film characterization, especially concerning phase detection and crystalline quality.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1307-1315"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied SpectroscopyPub Date : 2024-12-01Epub Date: 2024-09-24DOI: 10.1177/00037028241267325
Irene Bargagli, Martina Alunni Cardinali, Valeria Di Tullio, Brenda Doherty, Marco Paolantoni, Daniele Fioretto, Noemi Proietti, Francesca Sabatini, Costanza Miliani, Elisa Storace, Sara Russo, Rafaela Trevisan, Alessandra Vannini, Laura Cartechini, Lucia Comez, Francesca Rosi
{"title":"Assessing Mechanochemical Properties of Acrylonitrile Butadiene Styrene (ABS) Items in Cultural Heritage Through a Multimodal Spectroscopic Approach.","authors":"Irene Bargagli, Martina Alunni Cardinali, Valeria Di Tullio, Brenda Doherty, Marco Paolantoni, Daniele Fioretto, Noemi Proietti, Francesca Sabatini, Costanza Miliani, Elisa Storace, Sara Russo, Rafaela Trevisan, Alessandra Vannini, Laura Cartechini, Lucia Comez, Francesca Rosi","doi":"10.1177/00037028241267325","DOIUrl":"10.1177/00037028241267325","url":null,"abstract":"<p><p>A multimodal spectroscopic approach is proposed to correlate the mechanical and chemical properties of plastic materials in art and design objects, at both surface and subsurface levels, to obtain information about their conservation state and to monitor their degradation. The approach was used to investigate the photo-oxidation of acrylonitrile butadiene styrene (ABS), a plastic commonly found in many artistic and design applications, using ABS-based LEGO bricks as model samples. The modifications of the chemical and viscoelastic properties of ABS during photoaging were monitored by correlative Brillouin and Raman microspectroscopy (BRaMS), combined with portable and noninvasive broad-range external reflection infrared (IR) spectroscopy and nuclear magnetic resonance (NMR) relaxometry, directly applicable in museums. BRaMS enabled combined measurements of Brillouin light scattering and Raman spectroscopy in a microspectroscopic setup, providing for the coincident probe of the chemical and mechanical changes of ABS at the sample surface. NMR relaxometry allowed for noninvasive measurements of relaxation times and depth profiles which are directly related to the molecular mobility of the material. Complementary chemical information was acquired by external reflection IR spectroscopy. The simultaneous probe of the chemical and mechanical properties by this multimodal spectroscopic approach enabled us to define a decay model of ABS in terms of compositional changes and variation of stiffness and rigidity occurring with photodegradation. The knowledge acquired on LEGO samples has been used to rate the conservation state of ABS design objects noninvasively investigated by external reflection Fourier transform IR spectroscopy and NMR relaxometry offered by the MObile LABoratory (MOLAB) platform of the European Research Infrastructure of Heritage Science.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1316-1328"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied SpectroscopyPub Date : 2024-12-01Epub Date: 2024-09-05DOI: 10.1177/00037028241277575
Riccardo Dal Moro, Fabio Melison, Lorenzo Cocola, Luca Poletto
{"title":"Raman Spectroscopy for Temporally Resolved Combustion Gas Diagnostics.","authors":"Riccardo Dal Moro, Fabio Melison, Lorenzo Cocola, Luca Poletto","doi":"10.1177/00037028241277575","DOIUrl":"10.1177/00037028241277575","url":null,"abstract":"<p><p>A novel approach for cost-effective and temporally resolved in-line combustion gas diagnostics based on spontaneous Stokes Raman spectroscopy is presented in this paper. The proposed instrument uses a multipass configuration designed to increase the scattering generation, giving information about gas species concentrations, including H<sub>2</sub> and N<sub>2</sub> that are not commonly available from analysis with absorption spectroscopy techniques. The system performs calibrated analysis providing both qualitative and quantitative information about the gas composition. Depending on the application, the device can work with spectra integration time from 0.15 s up to 10 s, with a Raman spectrum ranging from the H<sub>2</sub> rotational peak at Raman shift of 587 cm<sup>-1</sup> up to the H<sub>2</sub> vibrational peak at 4156 cm<sup>-1</sup>, covering all the Raman emissions of major combustion species. The device response was characterized by a working pressure from 0.7 to 7.5 bar. The instrument prototype has been made completely transportable, designed to operate using a gas sampling system, and ready to be operated in relevant industrial in-line environments.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1263-1269"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied SpectroscopyPub Date : 2024-12-01Epub Date: 2024-09-30DOI: 10.1177/00037028241278903
Martina Alunni Cardinali, Marco Govoni, Sara Stefani, Alessandra Maso, Elisa Storni, Francesca Valenti, Melania Maglio, Assunta Morresi, Daniele Fioretto, Dante Dallari, Paola Sassi
{"title":"Combining Multiple Spectroscopic Techniques to Reveal the Effects of <i>Staphylococcus aureus</i> Infection on Human Bone Tissues.","authors":"Martina Alunni Cardinali, Marco Govoni, Sara Stefani, Alessandra Maso, Elisa Storni, Francesca Valenti, Melania Maglio, Assunta Morresi, Daniele Fioretto, Dante Dallari, Paola Sassi","doi":"10.1177/00037028241278903","DOIUrl":"10.1177/00037028241278903","url":null,"abstract":"<p><p>Osteomyelitis (OM) and periprosthetic joint infections (PJIs) are major public health concerns in Western countries due to increased life expectancy. Infections usually occur due to bacterial spread through fractures, implants, or blood-borne transmission. The pathogens trigger an inflammatory response that hinders bone tissue regeneration. Treatment requires surgical intervention, which involves the precise removal of infected tissue, wound cleansing, and local and systemic antibiotic administration. <i>Staphylococcus aureus</i> (SA) is one of the most common pathogens causing infection-induced OM and PJIs. It forms antimicrobial-resistant biofilms and is frequently found in healthcare settings. In this proof-of-concept, we present an approach based on multiple spectroscopic techniques aimed at investigating the effects of SA infection on bone tissue, as well as identifying specific markers useful to detect early bacterial colonization on the tissue surface. A cross-section of a human femoral diaphysis, with negative-culture results, was divided into three parts, and the cortical and trabecular regions were separated from each other. Two portions of each bone tissue type were infected with SA for one and seven days, respectively. Multiple techniques were used to investigate the impact of the infection on bone tissue, Brillouin-Raman microspectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were employed to assess and develop a new noninvasive diagnostic method to detect SA by targeting the bone of the host. The results indicate that exposure to SA infection significantly alters the bone structure, especially in the case of the trabecular type, even after just one day. Moreover, Raman spectral markers of the tissue damage were identified, indicating that this technique can detect the effect of the pathogens' presence in bone biopsies and pave the way for potential application during surgery, due to its nondestructive and contactless nature.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1295-1306"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied SpectroscopyPub Date : 2024-12-01Epub Date: 2024-05-09DOI: 10.1177/00037028241252693
Daniele Barbiero, Fabio Melison, Lorenzo Cocola, Massimo Fedel, Cristian Andrighetto, Paola De Dea, Luca Poletto
{"title":"Raman Spectroscopy Applied to Early Detection of <i>Clostridium</i> Infection in Milk.","authors":"Daniele Barbiero, Fabio Melison, Lorenzo Cocola, Massimo Fedel, Cristian Andrighetto, Paola De Dea, Luca Poletto","doi":"10.1177/00037028241252693","DOIUrl":"10.1177/00037028241252693","url":null,"abstract":"<p><p>Detecting <i>Clostridium</i> in milk presents a significant challenge for the dairy industry given that traditional methods are time-consuming and not specific for these bacteria. Microbiological techniques are expensive and require qualified personnel. <i>Clostridium</i>, in the form of spores, can withstand pasteurization and revert to its vegetative form during cheese aging. These gas-producing bacteria are known for their production of carbon dioxide and hydrogen, causing the formation of slits, cracks, and irregular eyes in hard and semi-hard cheeses. However, gas analysis in the vial headspace of appropriate culture can be exploited to specifically detect <i>Clostridium</i> presence, since the closest competing bacterial <i>Bacilli</i> produces only carbon dioxide. The aim of this paper is to present a Raman-spectroscopy-based instrument for a rapid, inexpensive identification of <i>Clostridium</i> in milk with a limit of detection of 29 spores/L. The proposed measurement procedure is analog to that routinely used, based on the most probable number method. The Raman-based instrument speeds up the detection of a vial's positivity. A test conducted with <i>Clostridium</i> spores demonstrated its effectiveness in almost halving the time needed for the measurement campaign compared to the traditional method.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1256-1262"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140896917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied SpectroscopyPub Date : 2024-12-01Epub Date: 2024-07-26DOI: 10.1177/00037028241265140
Alessia Arrigoni, Luigi Brambilla, Chiara Bertarelli, Carlo Saporiti, Chiara Castiglioni
{"title":"Conducting Electrospun Poly(3-hexylthiophene-2,5-diyl) Nanofibers: New Strategies for Effective Chemical Doping and its Assessment Using Infrared Spectroscopy.","authors":"Alessia Arrigoni, Luigi Brambilla, Chiara Bertarelli, Carlo Saporiti, Chiara Castiglioni","doi":"10.1177/00037028241265140","DOIUrl":"10.1177/00037028241265140","url":null,"abstract":"<p><p>Vibrational spectroscopy allows the investigation of structural properties of pristine and doped poly(3-hexylthiophene-2,5-diyl) (P3HT) in highly anisotropic materials, such as electrospun micro- and nanofibers. Here, we compare several approaches for doping P3HT fibers. We have selected two different electron acceptor molecules as dopants, namely iodine and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). In the case of iodine, we have explored the doping of the fibers according to several different procedures, i.e., by sequential doping both in vapors and in solution, and with a novel promising one-step method, which exploits the mixing of the dopant to the electrospinning feed solution. Polarized infrared (IR) spectroscopy experiments prove the orientation of P3HT chains, with the polymer backbone mainly running parallel to the fiber axis. After doping, P3HT fibers show very strong and polarized doping-induced IR active vibrations (IRAVs), which are the spectroscopic signature of the structure relaxation induced by the charged defects (polarons), thus providing an unambiguous proof of the effective doping. Raman spectroscopy complements the IR evidence: The Raman spectrum shows a clearly recognizable shift of the main band, the so-called effective conjugation coordinate band, in the doped samples. A simple protocol, which quantifies the evolution of the IRAV bands with time, allows monitoring of the doping stability over time and confirms that F4TCNQ is by far superior to iodine.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1279-1294"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexis Cova-Bonillo, Rayda Patiño-Camino, George Brinklow, Magín Lapuerta, José Rodríguez-Fernández, Jorge H Melillo, Silvina Cerveny
{"title":"Model Fitting and Analysis of Dielectric Properties in Alcohol-Fuel Blends Using Terahertz and Gigahertz Spectroscopies.","authors":"Alexis Cova-Bonillo, Rayda Patiño-Camino, George Brinklow, Magín Lapuerta, José Rodríguez-Fernández, Jorge H Melillo, Silvina Cerveny","doi":"10.1177/00037028241298300","DOIUrl":"https://doi.org/10.1177/00037028241298300","url":null,"abstract":"<p><p>Alcohols from biological waste sources or renewable electricity (electrofuels) are gaining attention in hard-to-decarbonize sectors such as transport. Adding alcohol to conventional fuels has positive environmental effects on automotive applications, requiring minimal engine adjustments. Employing a combination of terahertz (THz) and gigahertz (GHz) spectroscopies, a comprehensive analysis of model fitting is presented for diesel-like fuels, pure alcohols (ethanol and n-butanol), and alcohol-fuel blends. Through the integration of data from both spectroscopic techniques, new Debye parameters are introduced to improve the accuracy of fitting for various fuels. This research demonstrates that THz spectroscopy alone is valuable for reasonable fits, particularly for alcohols. However, integrating THz and GHz spectroscopies leads to improved fitting, and to better potential to understand the behavior of fuel properties. In addition, the effect of alcohol concentration on the dielectric constant spectra in blends was investigated, highlighting the importance of molecular interactions. The results reveal a linear relationship between fitted parameters and alcohol content in the blends. However, the study acknowledges limitations, including challenges in achieving satisfactory fits at low alcohol concentrations and the necessity for assumptions in the modeling process. These findings provide a basis for future research and advances in fuel property modeling.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241298300"},"PeriodicalIF":2.2,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integration of 6-Thioguanine Functionalized Molybdenum-Copper Bimetallic Nanoclusters With Fluorescence Spectroscopy for the Sensitive Detection of Uric Acid in Biofluids.","authors":"Harshita, Tae Jung Park, Suresh Kumar Kailasa","doi":"10.1177/00037028241292056","DOIUrl":"https://doi.org/10.1177/00037028241292056","url":null,"abstract":"<p><p>In this paper, a single-step synthetic approach is presented for the development of bimetallic molybdenum-copper nanoclusters (Mo-CuNCs), shielded by a small molecule 6-thioguanine (6-TG). The Mo-CuNCs possessed a small size, high fluorescence, stable behavior, and good solubility in water. The 6-TG-Mo-CuNCs exhibit strong blue fluorescence emission at 410 nm after exciting at 330 nm as compared to its monometallic nanoclusters. Utilizing 6-TG-Mo-CuNCs superior biochemical stability, uric acid (UA) can be specifically detected as an oxidative stress biomarker using an inner filter effect mechanism. The probe demonstrated good sensing capability for detecting UA within the range of 0.09-5.00 μM and a detection limit of 0.237 μM. The method feasibility is further validated by quantifying UA in urine and plasma samples.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241292056"},"PeriodicalIF":2.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Muhammad, Chang-Sheng Shao, Raziq Nawaz, Amil Aligayev, Muhammad Hassan, Mona Alrasheed Bashir, Jamshed Iqbal, Jie Zhan, Qing Huang
{"title":"Using Label-Free Raman Spectroscopy Integrated with Microfluidic Chips to Probe Ferroptosis Networks in Cells.","authors":"Muhammad Muhammad, Chang-Sheng Shao, Raziq Nawaz, Amil Aligayev, Muhammad Hassan, Mona Alrasheed Bashir, Jamshed Iqbal, Jie Zhan, Qing Huang","doi":"10.1177/00037028241292087","DOIUrl":"https://doi.org/10.1177/00037028241292087","url":null,"abstract":"<p><p>Ferroptosis, a regulated form of cell death driven by oxidative stress and lipid peroxidation, has emerged as a pivotal research focus with implications across various cellular contexts. In this study, we employed a multifaceted approach, integrating label-free Raman spectroscopy and microfluidics to study the mechanisms underpinning ferroptosis. Our investigations included the ferroptosis initiation based on the changes in the lipid Raman band at 1436 cm<sup>-1</sup> under different cellular states, the generation of reactive oxygen species (ROS), lipid peroxidation, DNA damage/repair, and mitochondrial dysfunction. Importantly, our work highlighted the dynamic role of vital cellular components, such as nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), ferredoxin clusters, and other key factors such as glutathione peroxidase 4 and nuclear factor erythroid 2, which collectively influenced cellular responses to redox imbalance and oxidative stress. Quantum mechanical (QM) and molecular docking simulations (MD) provided further evidence of interactions between the ferredoxin (containing 4Fe-4S clusters), NADPH, and ROS, which led to the production of reactive Fe species in the cells. As such, our approach not only offered a real-time, multidimensional perspective on ferroptosis but also provided valuable methods and insights for therapeutic interventions in diverse biomedical contexts.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241292087"},"PeriodicalIF":2.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christoforos Chrimatopoulos, Maria Laura Tummino, Eleftherios Iliadis, Cinzia Tonetti, Vasilios Sakkas
{"title":"Attenuated Total Reflection Fourier Transform Infrared Spectroscopy and Chemometrics for the Discrimination of Animal Hair Fibers for the Textile Sector.","authors":"Christoforos Chrimatopoulos, Maria Laura Tummino, Eleftherios Iliadis, Cinzia Tonetti, Vasilios Sakkas","doi":"10.1177/00037028241292372","DOIUrl":"https://doi.org/10.1177/00037028241292372","url":null,"abstract":"<p><p>Analyzing the composition of animal hair fibers in textiles is crucial for ensuring the quality of yarns and fabrics made from animal hair. Among others, Fourier transform infrared (FT-IR) spectroscopy is a technique that identifies vibrations associated with chemical bonds, including those found in amino acid groups. Cashmere, mohair, yak, camel, alpaca, vicuña, llama, and sheep hair fibers were analyzed via attenuated total reflection FT-IR (ATR FT-IR) spectroscopy and scanning electron microscopy techniques aiming at the discrimination among them to identify possible commercial frauds. ATR FT-IR, being a novel approach, was coupled with chemometric tools (partial least squares discriminant analysis, PLS-DA), building classification/prediction models, which were cross-validated. PLS-DA models provided an excellent differentiation among animal hair of both camelids and eight animal species. In addition, the combination of ATR FT-IR and PLS-DA was used to discriminate the cashmere hair from different origins (Afghanistan, Australia, China, Iran, and Mongolia). The model showed very good discrimination ability (accuracy 87%), with variance expression of 94.88% and mean squared error of cross-validation of 0.1525.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241292372"},"PeriodicalIF":2.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}