Applied SpectroscopyPub Date : 2024-07-01Epub Date: 2024-05-08DOI: 10.1177/00037028241248673
Amarachukwu Agbim, Georgia-Annicette Banga-Bothy, Alexander Samokhvalov
{"title":"Porphyrin Aluminum Metal-Organic Framework in Liquid Water, its Interaction with the Oxidized Organosulfur Compound Diethyl Sulfoxide, and its Sorption from Aqueous Solution.","authors":"Amarachukwu Agbim, Georgia-Annicette Banga-Bothy, Alexander Samokhvalov","doi":"10.1177/00037028241248673","DOIUrl":"10.1177/00037028241248673","url":null,"abstract":"<p><p>Oxidized organosulfur compounds and, in particular, sulfoxides are of interest as solvents in the semiconductor and pharmaceutical industry, environmental contaminants, and simulants in deactivation of chemical warfare agents. An experimental study is reported of the interaction of porphyrin aluminum metal-organic framework Al-MOF-TCPPH<sub>2</sub> (Compound 2) with diethyl sulfoxide (DESO) in pure form and in aqueous solution. First, the suitability of Compound 2 as sorbent in aqueous solution was assessed; namely, its long-term stability (up to 15 days) in liquid water has been investigated at room temperature and under stirring. Here, a novel facile spectroscopic method has been used, a periodic micro-sampling of sorbent from suspension, followed by vacuum mini-filtration and an ex situ time-dependent attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) analysis. Next, the interaction of Compound 2 with pure liquid DESO under ambient conditions was investigated, which yields the stoichiometric adsorption complex (Al-MOF-TCPPH<sub>2</sub>)<sub>1</sub>(DESO)<sub>2</sub> denoted Compound 3. In this adsorption complex, molecules of DESO interact with the OH group and carboxylate group of the sorbent. Then, the removal of DESO from Compound 3 was assessed, using facile treatment with warm water in the micro Soxhlet apparatus followed by the ATR FT-IR analysis. Finally, Compound 2 was tested in sorption of DESO from diluted aqueous solution. In the initial step, the sorption proceeds very quickly (in <1 min the concentration of DESO decreases by about 20%) followed by a much slower step. The maximum amount of adsorbed DESO corresponds to half of the amount adsorbed from pure DESO as found by the high-performance liquid chromatography-ultraviolet detection method. This adsorbed amount corresponds to 1 mol DESO adsorbate per mol of sorbent. Porphyrin aluminum metal-organic framework Compound 2 is promising for the removal of DESO from diluted aqueous solution, and it is of interest for the removal of similar oxidized organosulfur compounds.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"680-691"},"PeriodicalIF":2.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140875715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied SpectroscopyPub Date : 2024-07-01Epub Date: 2024-05-07DOI: 10.1177/00037028241247574
Emily N Weerakkody, Scott E Dubowsky, Nick G Glumac
{"title":"Emission Spectra of Uranium Particulates at High Temperature.","authors":"Emily N Weerakkody, Scott E Dubowsky, Nick G Glumac","doi":"10.1177/00037028241247574","DOIUrl":"10.1177/00037028241247574","url":null,"abstract":"<p><p>The emission spectrum of micron-scale uranium particulates at high temperatures in the ultraviolet, visible, and near-infrared spectral regions is investigated using a heterogeneous shock tube. Temperatures from 3000 to 9000 K are characterized in an inert argon environment and with incremental amounts of added oxygen. Atomic line spectra do not emerge above the continuum emission spectrum until between 4500 and 5000 K in pure argon, and 6100 and 6600 K in 1% oxygen. For 5% oxygen, however, the threshold for atomic emission drops below 3800 K. Uranium monoxide molecular emission in the strongest visible band at 595.4 nm is not observed at any condition. Uncertainties in particle temperature determination in high-temperature shock tube environments are discussed, and limitations to such measurements are presented, such as those from experimental factors such as the powder loading method and expected detection limits of uranium species in relevant conditions.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"692-701"},"PeriodicalIF":2.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140875714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
George C-Y Chan, Gary M Hieftje, Nicoló Omenetto, Ove Axner, Arne Bengtson, Nicolas H Bings, Michael W Blades, Annemie Bogaerts, Mikhail A Bolshov, José A C Broekaert, WingTat Chan, José M Costa-Fernández, Stanley R Crouch, Alessandro De Giacomo, Alessandro D'Ulivo, Carsten Engelhard, Heinz Falk, Paul B Farnsworth, Stefan Florek, Gerardo Gamez, Igor B Gornushkin, Detlef Günther, David W Hahn, Wei Hang, Volker Hoffmann, Norbert Jakubowski, Vassili Karanassios, David W Koppenaal, R Kenneth Marcus, Reinhard Noll, John W Olesik, Vincenzo Palleschi, Ulrich Panne, Jorge Pisonero, Steven J Ray, Martín Resano, Richard E Russo, Alexander Scheeline, Benjamin W Smith, Ralph E Sturgeon, José-Luis Todolí, Elisabetta Tognoni, Frank Vanhaecke, Michael R Webb, James D Winefordner, Lu Yang, Jin Yu, Zhanxia Zhang
{"title":"EXPRESS: Landmark Publications in Analytical Atomic Spectrometry: Fundamentals and Instrumentation Development.","authors":"George C-Y Chan, Gary M Hieftje, Nicoló Omenetto, Ove Axner, Arne Bengtson, Nicolas H Bings, Michael W Blades, Annemie Bogaerts, Mikhail A Bolshov, José A C Broekaert, WingTat Chan, José M Costa-Fernández, Stanley R Crouch, Alessandro De Giacomo, Alessandro D'Ulivo, Carsten Engelhard, Heinz Falk, Paul B Farnsworth, Stefan Florek, Gerardo Gamez, Igor B Gornushkin, Detlef Günther, David W Hahn, Wei Hang, Volker Hoffmann, Norbert Jakubowski, Vassili Karanassios, David W Koppenaal, R Kenneth Marcus, Reinhard Noll, John W Olesik, Vincenzo Palleschi, Ulrich Panne, Jorge Pisonero, Steven J Ray, Martín Resano, Richard E Russo, Alexander Scheeline, Benjamin W Smith, Ralph E Sturgeon, José-Luis Todolí, Elisabetta Tognoni, Frank Vanhaecke, Michael R Webb, James D Winefordner, Lu Yang, Jin Yu, Zhanxia Zhang","doi":"10.1177/00037028241263567","DOIUrl":"https://doi.org/10.1177/00037028241263567","url":null,"abstract":"<p><p>The almost-two-centuries history of spectrochemical analysis has generated a body of literature so vast that it has become nearly intractable for experts, much less for those wishing to enter the field. Authoritative, focused reviews help to address this problem but become so granular that the overall directions of the field are lost. This broader perspective can be provided partially by general overviews but then the thinking, experimental details, theoretical underpinnings and instrumental innovations of the original work must be sacrificed. In the present compilation, this dilemma is overcome by assembling the most impactful publications in the area of analytical atomic spectrometry. Each entry was proposed by at least one current expert in the field and supported by a narrative that justifies its inclusion. The entries were then assembled into a coherent sequence and returned to contributors for a round-robin review.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241263567"},"PeriodicalIF":3.5,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel Developments and Progress in Two-Dimensional Correlation Spectroscopy (2D-COS).","authors":"Yeonju Park, Isao Noda, Young Mee Jung","doi":"10.1177/00037028241255393","DOIUrl":"https://doi.org/10.1177/00037028241255393","url":null,"abstract":"<p><p>This first of the two-part series of the comprehensive survey review on the progress of the two-dimensional correlation spectroscopy (2D-COS) field during the period 2021-2022, covers books, reviews, tutorials, novel concepts and theories, and patent applications that appeared in the last two years, as well as some inappropriate use or citations of 2D-COS. The overall trend clearly shows that 2D-COS is continually growing and evolving with notable new developments. The technique is well recognized as a powerful analytical tool that provides deep insights into systems in many science fields.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241255393"},"PeriodicalIF":3.5,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cobey L McGinnis, Jesse A Frantz, Jasbinder S Sanghera, Kenneth J Ewing
{"title":"Biomimetic Optical-Filter Sensor System for Discrimination of Infrared Chemical Signatures Against a Cold Sky Background.","authors":"Cobey L McGinnis, Jesse A Frantz, Jasbinder S Sanghera, Kenneth J Ewing","doi":"10.1177/00037028241257267","DOIUrl":"https://doi.org/10.1177/00037028241257267","url":null,"abstract":"<p><p>Passive infrared (IR) systems enable rapid detection of chemical vapors but are limited by size, weight, cost, and power. Previously, the authors reported a novel passive sensor that utilizes multiple IR filter/detector combinations to discriminate between different chemical vapors based on their unique IR absorption spectra in the same manner the human eye uses to generate colors. This approach enables a very small, compact, and low-power sensor system with the capability to discriminate between chemical vapors of interest and background chemicals. All previous work showed the capability of this sensor system in discriminating chemical vapors against a hot blackbody in a laboratory environment. Now the authors demonstrate the ability of this sensor system to discriminate between the chemical vapor agent simulant dimethyl methylphosphonate and ethanol against the cold sky in an outdoor environment.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241257267"},"PeriodicalIF":3.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Krajačić, Nikola Baran, Ana Tolić, Lara Mikac, Mile Ivanda, Ozren Gamulin, Marko Škrabić
{"title":"Influence of One-Dimensional Photonic Crystal on Raman Signal Enhancement: A Detailed Experimental Study.","authors":"Maria Krajačić, Nikola Baran, Ana Tolić, Lara Mikac, Mile Ivanda, Ozren Gamulin, Marko Škrabić","doi":"10.1177/00037028241258101","DOIUrl":"https://doi.org/10.1177/00037028241258101","url":null,"abstract":"<p><p>The enhancement of Raman signals using photonic crystal structures has been the subject of numerous experimental and theoretical studies, leading to a variety of issues and inconsistencies. This paper presents a comprehensive experimental investigation into the impact of alignment between the laser excitation wavelength and the specific position of the photonic band gap on signal enhancement in Raman spectroscopy. By employing one-dimensional (1D) porous silicon photonic crystals, a systematic analysis across a large number of spectra was conducted. The study focused on examining the signal enhancement of both the Raman ∼520 cm<sup>-1</sup> silicon band, representing the constituent material of photonic crystal, and the most prominent Raman bands of crystal violet, used as a probe molecule. The probe molecules were both infiltrated into and adsorbed on top of the photonic crystal structure. The obtained experimental results for the contribution of 1D photonic crystals to Raman signal enhancement are much smaller compared to most predictions. The Raman signal of silicon and the signal from the probe molecule are enhanced ≤2.5 times when the laser excitation aligns with the edge of the photonic band gap, strictly defined as the position at the very bottom of the reflectance peak. The results have been discussed within the context of theoretical explanations.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241258101"},"PeriodicalIF":3.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS).","authors":"Yeonju Park, Isao Noda, Young Mee Jung","doi":"10.1177/00037028241256397","DOIUrl":"https://doi.org/10.1177/00037028241256397","url":null,"abstract":"<p><p>This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241256397"},"PeriodicalIF":3.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied SpectroscopyPub Date : 2024-06-01Epub Date: 2024-02-25DOI: 10.1177/00037028241231994
Kai Yu, Hao Wu, Hongli Xiong, Gongji Wang, Xin Wei, Xinggong Liang, Run Chen, Yuanyuan Zhang, Kai Zhang, Zhenyuan Wang
{"title":"Ante- and Post-Mortem Fracture Identification Protocol Based on Low- and High-Level Fusion Using Fourier Transform Infrared Spectroscopy and Raman Spectroscopy Association.","authors":"Kai Yu, Hao Wu, Hongli Xiong, Gongji Wang, Xin Wei, Xinggong Liang, Run Chen, Yuanyuan Zhang, Kai Zhang, Zhenyuan Wang","doi":"10.1177/00037028241231994","DOIUrl":"10.1177/00037028241231994","url":null,"abstract":"<p><p>In this study, the application of low-level fusion (LLF) and high-level fusion (HLF) strategies using a combination of Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy in the identification of antemortem and postmortem fracture at different postmortem intervals (PMIs) was investigated. On a technical level, the same hard tissue sample can be detected using a mix of FT-IR and Raman techniques. At the method level, two cutting-edge chemometrics approaches (LLF and HLF) combining FT-IR and Raman spectroscopic data are explored. The models were ranked in accordance with their parametric quality as follows: HLF and LLF + HLF models > LLF single model > Raman single model > FT-IR single model. The LLF model performed marginally better than the Raman model, however, when compared to other models, the HLF model performed considerably better. The HLF model achieved the best performance, with both cross-validation accuracy and test data set accuracy of 0.88. The importance of the feature wavelengths in the model construction process was subsequently evaluated by intersection fusion, and it was found that the absorbance bands of amide I, PO<sub>4</sub><sup>3-</sup> ν<sub>1</sub> ν<sub>3,</sub> and CH<sub>2</sub> in FT-IR and phenylalanine, CO<sub>3</sub><sup>2-</sup> ν<sub>1</sub>- PO<sub>4</sub><sup>3-</sup> ν<sub>3</sub>, and amide III in Raman have outstanding contributions to the construction of antemortem and postmortem fractures identification models. Overall, the combination of FT-IR and Raman with the HLF strategy is a novel and promising approach for developing antemortem and postmortem fracture identification models at different PMIs.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"605-615"},"PeriodicalIF":3.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phosphorus Modulated Peroxidase-Like Activity of Carbon Dots for Colorimetric Detection of Acid Phosphatase.","authors":"Yongmei Zhang, Haibo Liang, Xinru Wang, Ying Yu, Yujuan Cao, Manli Guo, Bixia Lin","doi":"10.1177/00037028241238246","DOIUrl":"10.1177/00037028241238246","url":null,"abstract":"<p><p>The precise regulation of nanoenzyme activity is of great significance for application to biosensing analysis. Herein, the peroxidase-like activity of carbon dots was effectively modulated by doping phosphorus, which was successfully employed for sensitive, selective detection of acid phosphatase (ACP). Phosphorus-doped carbon dots (P-CDs) with excellent peroxidase-like activity were synthesized by a one-pot hydrothermal method, and the catalytic activity could be easily modulated by controlling the additional amount of precursor phytic acid. P-CDs could effectively catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB oxidation products in the presence of hydrogen peroxide. While ACP was able to catalyze the hydrolysis of L-ascorbyl-2-phosphate trisodium salt (AAP) to produce ascorbic acid (AA), which inhibited the peroxidase-like activity of P-CDs, by combining P-CDs nanoenzymes and ACP-catalyzed hydrolysis the colorimetric method was established for ACP detection. The absorbance variation showed a good linear relationship with ACP concentration in the range of 0.4-4.0 mU/mL with a limit of detection at 0.12 mU/mL. In addition, the method was successfully applied to detect ACP in human serum samples with recoveries in the range of 98.7-101.6%. The work provides an effective strategy for regulating nanoenzymes activity and a low-cost detection technique for ACP.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"633-643"},"PeriodicalIF":3.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied SpectroscopyPub Date : 2024-06-01Epub Date: 2024-03-26DOI: 10.1177/00037028241239358
Mikolaj Krysa, Katarzyna Susniak, Cai Li Song, Monika Szymanska-Chargot, Artur Zdunek, Izabela S Pieta, Janusz Podleśny, Anna Sroka-Bartnicka, Sergei G Kazarian
{"title":"Multimodal Spectroscopic Studies to Evaluate the Effect of Nod-Factor-Based Fertilizer on the Maize (<i>Zea mays</i>) Stem.","authors":"Mikolaj Krysa, Katarzyna Susniak, Cai Li Song, Monika Szymanska-Chargot, Artur Zdunek, Izabela S Pieta, Janusz Podleśny, Anna Sroka-Bartnicka, Sergei G Kazarian","doi":"10.1177/00037028241239358","DOIUrl":"10.1177/00037028241239358","url":null,"abstract":"<p><p>Maize (<i>Zea mays</i>) is one of the most cultivated plants in the world. Due to the large area, the scale of its production, and the demand to increase the yield, there is a need for new environmentally friendly fertilizers. One group of such candidates is bacteria-produced nodulation (or nod) factors. Limited research has explored the impact of nodulation, factors on maize within field conditions, with most studies restricted to greenhouse settings and early developmental stages. Additionally, there is a scarcity of investigations that elucidate the metabolic alterations in the maize stem due to nod-factor exposure. It was therefore the aim of this study. Maize stem's metabolites and fibers were analyzed with various imaging analytical techniques: matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI), Raman spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), and diffuse reflectance infrared Fourier transform spectroscopy. Moreover, the biochemical analyses were used to evaluate the proteins and soluble carbohydrates concentration and total phenolic content. These techniques were used to evaluate the influence of nod factor-based biofertilizer on the growth of a non-symbiotic plant, maize. The biofertilizer increased the grain yield and the stem mass. Moreover, the spectroscopic and biochemical investigation proved the appreciable biochemical changes in the stems of the maize in biofertilizer-treated plants. Noticeable changes were found in the spatial distribution and the increase in the concentration of flavonoids such as maysin, quercetin, and rutin. Moreover, the concentration of cell wall components (fibers) increased. Furthermore, it was shown that the use of untargeted analyses (such as Raman and ATR FT-IR, spectroscopic imaging, and MALDI-MSI) is useful for the investigation of the biochemical changes in plants.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"591-604"},"PeriodicalIF":3.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}