High-Purity Strontium Carbonate Shows the Narrowest Peak Width of Raman Scattered Light.

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Nobuyasu Itoh
{"title":"High-Purity Strontium Carbonate Shows the Narrowest Peak Width of Raman Scattered Light.","authors":"Nobuyasu Itoh","doi":"10.1177/00037028251318757","DOIUrl":null,"url":null,"abstract":"<p><p>Raman microscopes are widely used in various fields and their spectral resolutions differ greatly depending on the system and optical components. Thus, it is important to evaluate the spectral resolution of Raman systems under measurement conditions. Although calcite is a crystal with a trigonal structure and its narrow peak at ∼1086 cm<sup>-1</sup> has been used to evaluate the spectral resolution of Raman spectrometers, the peak width of calcite itself (∼1.3 cm<sup>-1</sup> at full width half-maximum [FWHM]) is not negligible under high spectral resolution conditions. Because the calcite peak at ∼1086 cm<sup>-1</sup> originates from symmetric stretching, which is a common vibration mode for carbonate salts, we examined strontium carbonate (SrCO<sub>3</sub>), barium carbonate (BaCO<sub>3</sub>), and lead carbonate (PbCO<sub>3</sub>) reagents to find a material having a narrower peak width than calcite. SrCO<sub>3</sub>, BaCO<sub>3</sub>, and PbCO<sub>3</sub> peaks originating from symmetric stretching were observed at 1072, 1059, and 1054 cm<sup>-1</sup>, respectively, and their peak widths at FWHM (0.67, 0.92, and 1.09 cm<sup>-1</sup>, respectively) were narrower than that of calcite (1.36 cm<sup>-1</sup>). The narrow peak width of SrCO<sub>3</sub> was strongly dependent on its purity, probably due to its high structural regularity, and the change in the peak width (FWHM) was only 0.12 cm<sup>-1</sup> between 5 °C and 45 °C. Thus, we concluded that the high-purity SrCO<sub>3</sub> peak at 1072 cm<sup>-1</sup> was the narrowest peak of Raman scattering light under ambient conditions and is suitable for evaluating high spectral resolution for Raman spectrometers.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028251318757"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028251318757","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Raman microscopes are widely used in various fields and their spectral resolutions differ greatly depending on the system and optical components. Thus, it is important to evaluate the spectral resolution of Raman systems under measurement conditions. Although calcite is a crystal with a trigonal structure and its narrow peak at ∼1086 cm-1 has been used to evaluate the spectral resolution of Raman spectrometers, the peak width of calcite itself (∼1.3 cm-1 at full width half-maximum [FWHM]) is not negligible under high spectral resolution conditions. Because the calcite peak at ∼1086 cm-1 originates from symmetric stretching, which is a common vibration mode for carbonate salts, we examined strontium carbonate (SrCO3), barium carbonate (BaCO3), and lead carbonate (PbCO3) reagents to find a material having a narrower peak width than calcite. SrCO3, BaCO3, and PbCO3 peaks originating from symmetric stretching were observed at 1072, 1059, and 1054 cm-1, respectively, and their peak widths at FWHM (0.67, 0.92, and 1.09 cm-1, respectively) were narrower than that of calcite (1.36 cm-1). The narrow peak width of SrCO3 was strongly dependent on its purity, probably due to its high structural regularity, and the change in the peak width (FWHM) was only 0.12 cm-1 between 5 °C and 45 °C. Thus, we concluded that the high-purity SrCO3 peak at 1072 cm-1 was the narrowest peak of Raman scattering light under ambient conditions and is suitable for evaluating high spectral resolution for Raman spectrometers.

高纯碳酸锶的拉曼散射光峰宽最窄。
拉曼显微镜广泛应用于各个领域,其光谱分辨率因系统和光学元件的不同而差异很大。因此,在测量条件下评估拉曼系统的光谱分辨率是很重要的。虽然方解石是一种具有三角形结构的晶体,其在~ 1086 cm-1的窄峰已被用于评估拉曼光谱仪的光谱分辨率,但方解石本身的峰宽(在全宽半最大值[FWHM]时为~ 1.3 cm-1)在高光谱分辨率条件下不可忽略。由于方解石在~ 1086 cm-1处的峰源于对称拉伸,这是碳酸盐盐的常见振动模式,因此我们研究了碳酸锶(SrCO3)、碳酸钡(BaCO3)和碳酸铅(PbCO3)试剂,以寻找比方解石具有更窄峰宽的材料。对称拉伸形成的SrCO3、BaCO3和PbCO3峰分别位于1072、1059和1054 cm-1,其峰宽分别为0.67、0.92和1.09 cm-1,比方解石的峰宽(1.36 cm-1)窄。SrCO3的窄峰宽与纯度密切相关,这可能是由于其结构的高度规律性,在5°C和45°C之间,峰宽(FWHM)的变化仅为0.12 cm-1。因此,我们认为在环境条件下,1072 cm-1处的高纯度SrCO3峰是拉曼散射光的最窄峰,适合用于拉曼光谱仪的高光谱分辨率评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信