Luismar Barbosa da Cruz Junior, Kaio Bernardo de Barros, Carlos Eduardo Girasol, Raissa Mendonça Quaranta Lobão, Luciano Bachmann
{"title":"利用比色参数估算色素皮肤模型的吸收系数","authors":"Luismar Barbosa da Cruz Junior, Kaio Bernardo de Barros, Carlos Eduardo Girasol, Raissa Mendonça Quaranta Lobão, Luciano Bachmann","doi":"10.1177/00037028241281388","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing use of light-based treatments requires a better understanding of the light tissue interaction for pigmented skin. To enhance comprehension in this area, this study proposes the use of pigmented-mimicking skin phantoms to assess the optical properties based on their tone, represented by the Individual Typology Angle (ITA) color scale. In this study, an epoxy resin matrix alongside compact facial powder and titanium dioxide was used to mimic the absorption, scattering, and shade properties of human skins. Eight phantoms covering the skin tones, light (ITA = 45.2°), tan (ITA = 23.3°), brown (ITA = 6.9°, -5.7°, and -16.9°), and dark (ITA = -34.6°, -41.6°, and -48.6°), were crafted. The absorption and reduced scattering coefficients were obtained using integrating spheres and calibrated spectrometers in the 500-900 nm range, and tones were measured using a commercial colorimeter. The experimental fitting proposed in this study could estimate the optical properties as a function of the skin tones through ITA values, by using an exponential function with a second-order polynomial exponent. This investigation aligns with prior studies involving human skin samples, and these findings hold promise for future clinical and diagnostic applications, particularly in the realm of light-based treatments to individual dermatological corrections in pigmented skin.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241281388"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absorption Coefficient Estimation of Pigmented Skin Phantoms Using Colorimetric Parameters.\",\"authors\":\"Luismar Barbosa da Cruz Junior, Kaio Bernardo de Barros, Carlos Eduardo Girasol, Raissa Mendonça Quaranta Lobão, Luciano Bachmann\",\"doi\":\"10.1177/00037028241281388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing use of light-based treatments requires a better understanding of the light tissue interaction for pigmented skin. To enhance comprehension in this area, this study proposes the use of pigmented-mimicking skin phantoms to assess the optical properties based on their tone, represented by the Individual Typology Angle (ITA) color scale. In this study, an epoxy resin matrix alongside compact facial powder and titanium dioxide was used to mimic the absorption, scattering, and shade properties of human skins. Eight phantoms covering the skin tones, light (ITA = 45.2°), tan (ITA = 23.3°), brown (ITA = 6.9°, -5.7°, and -16.9°), and dark (ITA = -34.6°, -41.6°, and -48.6°), were crafted. The absorption and reduced scattering coefficients were obtained using integrating spheres and calibrated spectrometers in the 500-900 nm range, and tones were measured using a commercial colorimeter. The experimental fitting proposed in this study could estimate the optical properties as a function of the skin tones through ITA values, by using an exponential function with a second-order polynomial exponent. This investigation aligns with prior studies involving human skin samples, and these findings hold promise for future clinical and diagnostic applications, particularly in the realm of light-based treatments to individual dermatological corrections in pigmented skin.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"37028241281388\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028241281388\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241281388","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Absorption Coefficient Estimation of Pigmented Skin Phantoms Using Colorimetric Parameters.
The increasing use of light-based treatments requires a better understanding of the light tissue interaction for pigmented skin. To enhance comprehension in this area, this study proposes the use of pigmented-mimicking skin phantoms to assess the optical properties based on their tone, represented by the Individual Typology Angle (ITA) color scale. In this study, an epoxy resin matrix alongside compact facial powder and titanium dioxide was used to mimic the absorption, scattering, and shade properties of human skins. Eight phantoms covering the skin tones, light (ITA = 45.2°), tan (ITA = 23.3°), brown (ITA = 6.9°, -5.7°, and -16.9°), and dark (ITA = -34.6°, -41.6°, and -48.6°), were crafted. The absorption and reduced scattering coefficients were obtained using integrating spheres and calibrated spectrometers in the 500-900 nm range, and tones were measured using a commercial colorimeter. The experimental fitting proposed in this study could estimate the optical properties as a function of the skin tones through ITA values, by using an exponential function with a second-order polynomial exponent. This investigation aligns with prior studies involving human skin samples, and these findings hold promise for future clinical and diagnostic applications, particularly in the realm of light-based treatments to individual dermatological corrections in pigmented skin.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”