Nida' M Salem, Ahmad Jewehan, Miguel A Aranda, Adrian Fox
{"title":"Tomato Brown Rugose Fruit Virus Pandemic.","authors":"Nida' M Salem, Ahmad Jewehan, Miguel A Aranda, Adrian Fox","doi":"10.1146/annurev-phyto-021622-120703","DOIUrl":"10.1146/annurev-phyto-021622-120703","url":null,"abstract":"<p><p>Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus. It was first reported in 2015 in Jordan in greenhouse tomatoes and now threatens tomato and pepper crops around the world. ToBRFV is a stable and highly infectious virus that is easily transmitted by mechanical means and via seeds, which enables it to spread locally and over long distances. The ability of ToBRFV to infect tomato plants harboring the commonly deployed <i>Tm</i> resistance genes, as well as pepper plants harboring the <i>L</i> resistance alleles under certain conditions, limits the ability to prevent damage from the virus. The fruit production and quality of ToBRFV-infected tomato and pepper plants can be drastically affected, thus significantly impacting their market value. Herein, we review the current information and discuss the latest areas of research on this virus, which include its discovery and distribution, epidemiology, detection, and prevention and control measures, that could help mitigate the ToBRFV disease pandemic.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"137-164"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10148777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Past Is Present: Coevolution of Viruses and Host Resistance Within Geographic Centers of Plant Diversity.","authors":"Karen-Beth G Scholthof","doi":"10.1146/annurev-phyto-021621-113819","DOIUrl":"10.1146/annurev-phyto-021621-113819","url":null,"abstract":"<p><p>Understanding the coevolutionary history of plants, pathogens, and disease resistance is vital for plant pathology. Here, I review Francis O. Holmes's work with tobacco mosaic virus (TMV) framed by the foundational work of Nikolai Vavilov on the geographic centers of origin of plants and crop wild relatives (CWRs) and T. Harper Goodspeed's taxonomy of the genus <i>Nicotiana</i>. Holmes developed a hypothesis that the origin of host resistance to viruses was due to coevolution of both at a geographic center. In the 1950s, Holmes proved that genetic resistance to TMV, especially dominant <i>R</i>-genes, was centered in South America for <i>Nicotiana</i> and other solanaceous plants, including <i>Capsicum</i>, potato, and tomato. One seeming exception was eggplant (<i>Solanum melongena</i>). Not until the acceptance of plate tectonics in the 1960s and recent advances in evolutionary taxonomy did it become evident that northeast Africa was the home of eggplant CWRs, far from Holmes's geographic center for TMV-<i>R</i>-gene coevolution. Unbeknownst to most plant pathologists, Holmes's ideas predated those of H.H. Flor, including experimental proof of the gene-for-gene interaction, identification of <i>R</i>-genes, and deployment of dominant host genes to protect crop plants from virus-associated yield losses.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"119-136"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10155190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enoch Lok Him Yuen, Samuel Shepherd, Tolga O Bozkurt
{"title":"Traffic Control: Subversion of Plant Membrane Trafficking by Pathogens.","authors":"Enoch Lok Him Yuen, Samuel Shepherd, Tolga O Bozkurt","doi":"10.1146/annurev-phyto-021622-123232","DOIUrl":"10.1146/annurev-phyto-021622-123232","url":null,"abstract":"<p><p>Membrane trafficking pathways play a prominent role in plant immunity. The endomembrane transport system coordinates membrane-bound cellular organelles to ensure that immunological components are utilized effectively during pathogen resistance. Adapted pathogens and pests have evolved to interfere with aspects of membrane transport systems to subvert plant immunity. To do this, they secrete virulence factors known as effectors, many of which converge on host membrane trafficking routes. The emerging paradigm is that effectors redundantly target every step of membrane trafficking from vesicle budding to trafficking and membrane fusion. In this review, we focus on the mechanisms adopted by plant pathogens to reprogram host plant vesicle trafficking, providing examples of effector-targeted transport pathways and highlighting key questions for the field to answer moving forward.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"325-350"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10148737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard A Sikora, Johannes Helder, Leendert P G Molendijk, Johan Desaeger, Sebastian Eves-van den Akker, Anne-Katrin Mahlein
{"title":"Integrated Nematode Management in a World in Transition: Constraints, Policy, Processes, and Technologies for the Future.","authors":"Richard A Sikora, Johannes Helder, Leendert P G Molendijk, Johan Desaeger, Sebastian Eves-van den Akker, Anne-Katrin Mahlein","doi":"10.1146/annurev-phyto-021622-113058","DOIUrl":"10.1146/annurev-phyto-021622-113058","url":null,"abstract":"<p><p>Plant-parasitic nematodes are one of the most insidious pests limiting agricultural production, parasitizing mostly belowground and occasionally aboveground plant parts. They are an important and underestimated component of the estimated 30% yield loss inflicted on crops globally by biotic constraints. Nematode damage is intensified by interactions with biotic and abiotic factors constraints: soilborne pathogens, soil fertility degradation, reduced soil biodiversity, climate variability, and policies influencing the development of improved management options. This review focuses on the following topics: (<i>a</i>) biotic and abiotic constraints, (<i>b</i>) modification of production systems, (<i>c</i>) agricultural policies, (<i>d</i>) the microbiome, (<i>e</i>) genetic solutions, and (<i>f</i>) remote sensing. Improving integrated nematode management (INM) across all scales of agricultural production and along the Global North-Global South divide, where inequalities influence access to technology, is discussed. The importance of the integration of technological development in INM is critical to improving food security and human well-being in the future.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"209-230"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10148738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L M Quesada-Ocampo, C H Parada-Rojas, Z Hansen, G Vogel, C Smart, M K Hausbeck, R M Carmo, E Huitema, R P Naegele, C S Kousik, P Tandy, K Lamour
{"title":"<i>Phytophthora capsici</i>: Recent Progress on Fundamental Biology and Disease Management 100 Years After Its Description.","authors":"L M Quesada-Ocampo, C H Parada-Rojas, Z Hansen, G Vogel, C Smart, M K Hausbeck, R M Carmo, E Huitema, R P Naegele, C S Kousik, P Tandy, K Lamour","doi":"10.1146/annurev-phyto-021622-103801","DOIUrl":"10.1146/annurev-phyto-021622-103801","url":null,"abstract":"<p><p><i>Phytophthora capsici</i> is a destructive oomycete pathogen of vegetable, ornamental, and tropical crops. First described by L.H. Leonian in 1922 as a pathogen of pepper in New Mexico, USA, <i>P. capsici</i> is now widespread in temperate and tropical countries alike. <i>Phytophthora capsici</i> is notorious for its capability to evade disease management strategies. High genetic diversity allows <i>P. capsici</i> populations to overcome fungicides and host resistance, the formation of oospores results in long-term persistence in soils, zoospore differentiation in the presence of water increases epidemic potential, and a broad host range maximizes economic losses and limits the effectiveness of crop rotation. The severity of disease caused by <i>P. capsici</i> and management challenges have led to numerous research efforts in the past 100 years. Here, we discuss recent findings regarding the biology, genetic diversity, disease management, fungicide resistance, host resistance, genomics, and effector biology of <i>P. capsici</i>.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"185-208"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10148769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Ralstonia solanacearum</i>: An Arsenal of Virulence Strategies and Prospects for Resistance.","authors":"Fabienne Vailleau, Stéphane Genin","doi":"10.1146/annurev-phyto-021622-104551","DOIUrl":"10.1146/annurev-phyto-021622-104551","url":null,"abstract":"<p><p>The group of strains constituting the <i>Ralstonia solanacearum</i> species complex (RSSC) is a prominent model for the study of plant-pathogenic bacteria because of its impact on agriculture, owing to its wide host range, worldwide distribution, and long persistence in the environment. RSSC strains have led to numerous studies aimed at deciphering the molecular bases of virulence, and many biological functions and mechanisms have been described to contribute to host infection and pathogenesis. In this review, we put into perspective recent advances in our understanding of virulence in RSSC strains, both in terms of the inventory of functions that participate in this process and their evolutionary dynamics. We also present the different strategies that have been developed to combat these pathogenic strains through biological control, antimicrobial agents, plant genetics, or microbiota engineering.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"25-47"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10158101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering the Crop Microbiota Through Host Genetics.","authors":"Carmen Escudero-Martinez, Davide Bulgarelli","doi":"10.1146/annurev-phyto-021621-121447","DOIUrl":"10.1146/annurev-phyto-021621-121447","url":null,"abstract":"<p><p>The microbiota populating the plant-soil continuum defines an untapped resource for sustainable crop production. The host plant is a driver for the taxonomic composition and function of these microbial communities. In this review, we illustrate how the host genetic determinants of the microbiota have been shaped by plant domestication and crop diversification. We discuss how the heritable component of microbiota recruitment may represent, at least partially, a selection for microbial functions underpinning the growth, development, and health of their host plants and how the magnitude of this heritability is influenced by the environment. We illustrate how host-microbiota interactions can be treated as an external quantitative trait and review recent studies associating crop genetics with microbiota-based quantitative traits. We also explore the results of reductionist approaches, including synthetic microbial communities, to establish causal relationships between microbiota and plant phenotypes. Lastly, we propose strategies to integrate microbiota manipulation into crop selection programs. Although a detailed understanding of when and how heritability for microbiota composition can be deployed for breeding purposes is still lacking, we argue that advances in crop genomics are likely to accelerate wider applications of plant-microbiota interactions in agriculture.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"257-277"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10511465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John McDowell, Gwyn Beattie, Steve Lindow, Jan Leach
{"title":"Appreciation for the Leadership of Leach and Lindow.","authors":"John McDowell, Gwyn Beattie, Steve Lindow, Jan Leach","doi":"10.1146/annurev-py-60-061722-100001","DOIUrl":"https://doi.org/10.1146/annurev-py-60-061722-100001","url":null,"abstract":"","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":"v"},"PeriodicalIF":10.2,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40420548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jasmine S Peters, Beatriz A Aguirre, Anna DiPaola, Alison G Power
{"title":"Ecology of Yellow Dwarf Viruses in Crops and Grasslands: Interactions in the Context of Climate Change.","authors":"Jasmine S Peters, Beatriz A Aguirre, Anna DiPaola, Alison G Power","doi":"10.1146/annurev-phyto-020620-101848","DOIUrl":"https://doi.org/10.1146/annurev-phyto-020620-101848","url":null,"abstract":"<p><p>Our understanding of the ecological interactions between plant viruses, their insect vectors, and their host plants has increased rapidly over the past decade. The suite of viruses known collectively as the yellow dwarf viruses infect an extensive range of cultivated and noncultivated grasses worldwide and is one of the best-studied plant virus systems. The yellow dwarf viruses are ubiquitous in cereal crops, where they can significantly limit yields, and there is growing recognition that they are also ubiquitous in grassland ecosystems, where they can influence community dynamics. Here, we discuss recent research that has explored (<i>a</i>) the extent and impact of yellow dwarf viruses in a diversity of plant communities, (<i>b</i>) the role of vector behavior in virus transmission, and (<i>c</i>) the prospects for impacts of climate change-including rising temperatures, drought, and elevated CO<sub>2</sub>-on the epidemiology of yellow dwarf viruses.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":"283-305"},"PeriodicalIF":10.2,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40420547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anuj Sharma, Peter Abrahamian, Renato Carvalho, Manoj Choudhary, Mathews L Paret, Gary E Vallad, Jeffrey B Jones
{"title":"Future of Bacterial Disease Management in Crop Production.","authors":"Anuj Sharma, Peter Abrahamian, Renato Carvalho, Manoj Choudhary, Mathews L Paret, Gary E Vallad, Jeffrey B Jones","doi":"10.1146/annurev-phyto-021621-121806","DOIUrl":"https://doi.org/10.1146/annurev-phyto-021621-121806","url":null,"abstract":"<p><p>Bacterial diseases are a constant threat to crop production globally. Current management strategies rely on an array of tactics, including improved cultural practices; application of bactericides, plant activators, and biocontrol agents; and use of resistant varieties when available. However, effective management remains a challenge, as the longevity of deployed tactics is threatened by constantly changing bacterial populations. Increased scrutiny of the impact of pesticides on human and environmental health underscores the need for alternative solutions that are durable, sustainable, accessible to farmers, and environmentally friendly. In this review, we discuss the strengths and shortcomings of existing practices and dissect recent advances that may shape the future of bacterial disease management. We conclude that disease resistance through genome modification may be the most effective arsenal against bacterial diseases. Nonetheless, more research is necessary for developing novel bacterial disease management tactics to meet the food demand of a growing global population.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":"259-282"},"PeriodicalIF":10.2,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40585276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}