Annual review of phytopathology最新文献

筛选
英文 中文
Rooting Out the Mechanisms of Root-Knot Nematode-Plant Interactions. 根结线虫与植物相互作用机制的研究。
IF 10.2 1区 农林科学
Annual review of phytopathology Pub Date : 2022-08-26 Epub Date: 2022-03-22 DOI: 10.1146/annurev-phyto-021621-120943
William B Rutter, Jessica Franco, Cynthia Gleason
{"title":"Rooting Out the Mechanisms of Root-Knot Nematode-Plant Interactions.","authors":"William B Rutter,&nbsp;Jessica Franco,&nbsp;Cynthia Gleason","doi":"10.1146/annurev-phyto-021621-120943","DOIUrl":"https://doi.org/10.1146/annurev-phyto-021621-120943","url":null,"abstract":"<p><p>Root-knot nematodes (RKNs; <i>Meloidogyne</i> spp.) engage in complex parasitic interactions with many different host plants around the world, initiating elaborate feeding sites and disrupting host root architecture. Although RKNs have been the focus of research for many decades, new molecular tools have provided useful insights into the biological mechanisms these pests use to infect and manipulate their hosts. From identifying host defense mechanisms underlying resistance to RKNs to characterizing nematode effectors that alter host cellular functions, the past decade of research has significantly expanded our understanding of RKN-plant interactions, and the increasing number of quality parasite and host genomes promises to enhance future research efforts into RKNs. In this review, we have highlighted recent discoveries, summarized the current understanding within the field, and provided links to new and useful resources for researchers. Our goal is to offer insights and tools to support the study of molecular RKN-plant interactions.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":"43-76"},"PeriodicalIF":10.2,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40313136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Point-of-Care DNA Amplification for Disease Diagnosis and Management. 用于疾病诊断和管理的即时DNA扩增。
IF 10.2 1区 农林科学
Annual review of phytopathology Pub Date : 2022-08-26 DOI: 10.1146/annurev-phyto-021621-115027
José R Botella
{"title":"Point-of-Care DNA Amplification for Disease Diagnosis and Management.","authors":"José R Botella","doi":"10.1146/annurev-phyto-021621-115027","DOIUrl":"https://doi.org/10.1146/annurev-phyto-021621-115027","url":null,"abstract":"<p><p>Early detection of pests and pathogens is of paramount importance in reducing agricultural losses. One approach to early detection is point-of-care (POC) diagnostics, which can provide early warning and therefore allow fast deployment of preventive measures to slow down the establishment of crop diseases. Among the available diagnostic technologies, nucleic acid amplification-based diagnostics provide the highest sensitivity and specificity, and those technologies that forego the requirement for thermocycling show the most potential for use at POC. In this review, I discuss the progress, advantages, and disadvantages of the established and most promising POC amplification technologies. The success and usefulness of POC amplification are ultimately dependent on the availability of POC-friendly nucleic acid extraction methods and amplification readouts, which are also briefly discussed in the review.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":"1-20"},"PeriodicalIF":10.2,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40431253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Climate Change Effects on Pathogen Emergence: Artificial Intelligence to Translate Big Data for Mitigation. 气候变化对病原体出现的影响:人工智能翻译大数据以缓解。
IF 10.2 1区 农林科学
Annual review of phytopathology Pub Date : 2022-06-01 DOI: 10.1146/annurev-phyto-021021-042636
K. Garrett, D. Bebber, B. Etherton, K. Gold, A. I. P. Sulá, M. Selvaraj
{"title":"Climate Change Effects on Pathogen Emergence: Artificial Intelligence to Translate Big Data for Mitigation.","authors":"K. Garrett, D. Bebber, B. Etherton, K. Gold, A. I. P. Sulá, M. Selvaraj","doi":"10.1146/annurev-phyto-021021-042636","DOIUrl":"https://doi.org/10.1146/annurev-phyto-021021-042636","url":null,"abstract":"Plant pathology has developed a wide range of concepts and tools for improving plant disease management, including models for understanding and responding to new risks from climate change. Most of these tools can be improved using new advances in artificial intelligence (AI), such as machine learning to integrate massive data sets in predictive models. There is the potential to develop automated analyses of risk that alert decision-makers, from farm managers to national plant protection organizations, to the likely need for action and provide decision support for targeting responses. We review machine-learning applications in plant pathology and synthesize ideas for the next steps to make the most of these tools in digital agriculture. Global projects, such as the proposed global surveillance system for plant disease, will be strengthened by the integration of the wide range of new data, including data from tools like remote sensors, that are used to evaluate the risk of plant disease. There is exciting potential for the use of AI to strengthen global capacity building as well, from image analysis for disease diagnostics and associated management recommendations on farmers' phones to future training methodologies for plant pathologists that are customized in real-time for management needs in response to the current risks. International cooperation in integrating data and models will help develop the most effective responses to new challenges from climate change. Expected final online publication date for the Annual Review of Phytopathology, Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43181273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Mycovirus Diversity and Evolution Revealed/Inferred from Recent Studies. 从最近的研究中揭示/推断的真菌病毒多样性和进化。
IF 10.2 1区 农林科学
Annual review of phytopathology Pub Date : 2022-05-24 DOI: 10.1146/annurev-phyto-021621-122122
H. Kondō, L. Botella, N. Suzuki
{"title":"Mycovirus Diversity and Evolution Revealed/Inferred from Recent Studies.","authors":"H. Kondō, L. Botella, N. Suzuki","doi":"10.1146/annurev-phyto-021621-122122","DOIUrl":"https://doi.org/10.1146/annurev-phyto-021621-122122","url":null,"abstract":"High-throughput virome analyses with various fungi, from cultured or uncultured sources, have led to the discovery of diverse viruses with unique genome structures and even neo-lifestyles. Examples in the former category include splipalmiviruses and ambiviruses. Splipalmiviruses, related to yeast narnaviruses, have multiple positive-sense (+) single-stranded (ss) RNA genomic segments that separately encode the RNA-dependent RNA polymerase motifs, the hallmark of RNA viruses (members of the kingdom Orthornavirae). Ambiviruses appear to have an undivided ssRNA genome of 3∼5 kb with two large open reading frames (ORFs) separated by intergenic regions. Another narna-like virus group has two fully overlapping ORFs on both strands of a genomic segment that span more than 90% of the genome size. New virus lifestyles exhibited by mycoviruses include the yado-kari/yado-nushi nature characterized by the partnership between the (+)ssRNA yadokarivirus and an unrelated dsRNA virus (donor of the capsid for the former) and the hadaka nature of capsidless 10-11 segmented (+)ssRNA accessible by RNase in infected mycelial homogenates. Furthermore, dsRNA polymycoviruses with phylogenetic affinity to (+)ssRNA animal caliciviruses have been shown to be infectious as dsRNA-protein complexes or deproteinized naked dsRNA. Many previous phylogenetic gaps have been filled by recently discovered fungal and other viruses, which have provided interesting evolutionary insights. Phylogenetic analyses and the discovery of natural and experimental cross-kingdom infections suggest that horizontal virus transfer may have occurred and continue to occur between fungi and other kingdoms. Expected final online publication date for the Annual Review of Phytopathology, Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44039790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
Facilitating Reforestation Through the Plant Microbiome: Perspectives from the Phyllosphere. 通过植物微生物群落促进再造林:从层层圈的角度。
IF 10.2 1区 农林科学
Annual review of phytopathology Pub Date : 2022-05-18 DOI: 10.1146/annurev-phyto-021320-010717
P. Busby, G. Newcombe, Abigail S Neat, C. Averill
{"title":"Facilitating Reforestation Through the Plant Microbiome: Perspectives from the Phyllosphere.","authors":"P. Busby, G. Newcombe, Abigail S Neat, C. Averill","doi":"10.1146/annurev-phyto-021320-010717","DOIUrl":"https://doi.org/10.1146/annurev-phyto-021320-010717","url":null,"abstract":"Tree planting and natural regeneration contribute to the ongoing effort to restore Earth's forests. Our review addresses how the plant microbiome can enhance the survival of planted and naturally regenerating seedlings and serve in long-term forest carbon capture and the conservation of biodiversity. We focus on fungal leaf endophytes, ubiquitous defensive symbionts that protect against pathogens. We first show that fungal and oomycetous pathogen richness varies greatly for tree species native to the United States (n = 0-876 known pathogens per US tree species), with nearly half of tree species either without pathogens in these major groups or with unknown pathogens. Endophytes are insurance against the poorly known and changing threat of tree pathogens. Next, we reviewed studies of plant-phyllosphere feedback, but knowledge gaps prevented us from evaluating whether adding conspecific leaf litter to planted seedlings promotes defensive symbiosis, analogous to adding soil to promote positive feedback. Finally, we discuss research priorities for integrating the plant microbiome into efforts to expand Earth's forests. Expected final online publication date for the Annual Review of Phytopathology, Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42777014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Molecular Interactions Between Leptosphaeria maculans and Brassica Species. 斑纤球菌与芸苔属植物的分子相互作用。
IF 10.2 1区 农林科学
Annual review of phytopathology Pub Date : 2022-05-16 DOI: 10.1146/annurev-phyto-021621-120602
M. H. Borhan, A. P. Van de Wouw, N. Larkan
{"title":"Molecular Interactions Between Leptosphaeria maculans and Brassica Species.","authors":"M. H. Borhan, A. P. Van de Wouw, N. Larkan","doi":"10.1146/annurev-phyto-021621-120602","DOIUrl":"https://doi.org/10.1146/annurev-phyto-021621-120602","url":null,"abstract":"Canola is an important oilseed crop, providing food, feed, and fuel around the world. However, blackleg disease, caused by the ascomycete Leptosphaeria maculans, causes significant yield losses annually. With the recent advances in genomic technologies, the understanding of the Brassica napus-L. maculans interaction has rapidly increased, with numerous Avr and R genes cloned, setting this system up as a model organism for studying plant-pathogen associations. Although the B. napus-L. maculans interaction follows Flor's gene-for-gene hypothesis for qualitative resistance, it also puts some unique spins on the interaction. This review discusses the current status of the host-pathogen interaction and highlights some of the future gaps that need addressing moving forward. Expected final online publication date for the Annual Review of Phytopathology, Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44776052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Diversity, Evolution, and Function of Pseudomonas syringae Effectoromes. 丁香假单胞菌效应体的多样性、进化和功能。
IF 10.2 1区 农林科学
Annual review of phytopathology Pub Date : 2022-05-10 DOI: 10.1146/annurev-phyto-021621-121935
Cedoljub Bundalovic-Torma, F. Lonjon, D. Desveaux, D. Guttman
{"title":"Diversity, Evolution, and Function of Pseudomonas syringae Effectoromes.","authors":"Cedoljub Bundalovic-Torma, F. Lonjon, D. Desveaux, D. Guttman","doi":"10.1146/annurev-phyto-021621-121935","DOIUrl":"https://doi.org/10.1146/annurev-phyto-021621-121935","url":null,"abstract":"Pseudomonas syringae is an evolutionarily diverse bacterial species complex and a preeminent model for the study of plant-pathogen interactions due in part to its remarkably broad host range. A critical feature of P. syringae virulence is the employment of suites of type III secreted effector (T3SE) proteins, which vary widely in composition and function. These effectors act on a variety of plant intracellular targets to promote pathogenesis but can also be avirulence factors when detected by host immune complexes. In this review, we survey the phylogenetic diversity (PD) of the P. syringae effectorome, comprising 70 distinct T3SE families identified to date, and highlight how avoidance of host immune detection has shaped effectorome diversity through functional redundancy, diversification, and horizontal transfer. We present emerging avenues for research and novel insights that can be gained via future investigations of plant-pathogen interactions through the fusion of large-scale interaction screens and phylogenomic approaches. Expected final online publication date for the Annual Review of Phytopathology, Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44550429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Exploring the Emergence and Evolution of Plant Pathogenic Microbes Using Historical and Paleontological Sources. 利用历史和古生物资源探索植物病原微生物的出现和进化。
IF 10.2 1区 农林科学
Annual review of phytopathology Pub Date : 2022-04-28 DOI: 10.1146/annurev-phyto-021021-041830
C. Malmstrom, Michael D. Martin, L. Gagnevin
{"title":"Exploring the Emergence and Evolution of Plant Pathogenic Microbes Using Historical and Paleontological Sources.","authors":"C. Malmstrom, Michael D. Martin, L. Gagnevin","doi":"10.1146/annurev-phyto-021021-041830","DOIUrl":"https://doi.org/10.1146/annurev-phyto-021021-041830","url":null,"abstract":"Biotechnological advances now permit broad exploration of past microbial communities preserved in diverse substrates. Despite biomolecular degradation, high-throughput sequencing of preserved materials can yield invaluable genomic and metagenomic data from the past. This line of research has expanded from its initial human- and animal-centric foci to include plant-associated microbes (viruses, archaea, bacteria, fungi, and oomycetes), for which historical, archaeological, and paleontological data illuminate past epidemics and evolutionary history. Genetic mechanisms underlying the acquisition of microbial pathogenicity, including hybridization, polyploidization, and horizontal gene transfer, can now be reconstructed, as can gene-for-gene coevolution with plant hosts. Epidemiological parameters, such as geographic origin and range expansion, can also be assessed. Building on published case studies with individual phytomicrobial taxa, the stage is now set for broader, community-wide studies of preserved plant microbiomes to strengthen mechanistic understanding of microbial interactions and plant disease emergence. Expected final online publication date for the Annual Review of Phytopathology, Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48176504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Pathogen Adaptation to the Xylem Environment. 病原菌对木质部环境的适应。
IF 10.2 1区 农林科学
Annual review of phytopathology Pub Date : 2022-04-26 DOI: 10.1146/annurev-phyto-021021-041716
L. De La Fuente, M. Merfa, P. Cobine, Jeffrey J. Coleman
{"title":"Pathogen Adaptation to the Xylem Environment.","authors":"L. De La Fuente, M. Merfa, P. Cobine, Jeffrey J. Coleman","doi":"10.1146/annurev-phyto-021021-041716","DOIUrl":"https://doi.org/10.1146/annurev-phyto-021021-041716","url":null,"abstract":"A group of aggressive pathogens have evolved to colonize the plant xylem. In this vascular tissue, where water and nutrients are transported from the roots to the rest of the plant, pathogens must be able to thrive under acropetal xylem sap flow and scarcity of nutrients while having direct contact only with predominantly dead cells. Nevertheless, a few bacteria have adapted to exclusively live in the xylem, and various pathogens may colonize other plant niches without causing symptoms unless they reach the xylem. Once established, the pathogens modulate its physicochemical conditions to enhance their growth and virulence. Adaptation to the restrictive lifestyle of the xylem leads to genome reduction in xylem-restricted bacteria, as they have a higher proportion of pseudogenes in their genome. The basis of xylem adaptation is not completely understood; therefore, a need still exists for model systems to advance the knowledge on this topic. Expected final online publication date for the Annual Review of Phytopathology, Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44666077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Yellow Dwarf Viruses of Cereals: Taxonomy and Molecular Mechanisms. 谷物黄矮病毒:分类和分子机制。
IF 10.2 1区 农林科学
Annual review of phytopathology Pub Date : 2022-04-18 DOI: 10.1146/annurev-phyto-121421-125135
W. Miller, Zachary R. Lozier
{"title":"Yellow Dwarf Viruses of Cereals: Taxonomy and Molecular Mechanisms.","authors":"W. Miller, Zachary R. Lozier","doi":"10.1146/annurev-phyto-121421-125135","DOIUrl":"https://doi.org/10.1146/annurev-phyto-121421-125135","url":null,"abstract":"Yellow dwarf viruses are the most economically important and widespread viruses of cereal crops. Although they share common biological properties such as phloem limitation and obligate aphid transmission, the replication machinery and associated cis-acting signals of these viruses fall into two unrelated taxa represented by Barley yellow dwarf virus and Cereal yellow dwarf virus. Here, we explain the reclassification of these viruses based on their very different genomes. We also provide an overview of viral protein functions and their interactions with the host and vector, replication mechanisms of viral and satellite RNAs, and the complex gene expression strategies. Throughout, we point out key unanswered questions in virus evolution, structural biology, and genome function and replication that, when answered, may ultimately provide new tools for virus management. Expected final online publication date for the Annual Review of Phytopathology, Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48999631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信