Applied physics reviews最新文献

筛选
英文 中文
Thermal transport property of boron nitride nanosheets 氮化硼纳米片的热传输特性
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-15 DOI: 10.1063/5.0213741
Amrito Bhattacharjee, Hongbo Jiang, Lu Hua Li, Shaoming Huang, Ying Ian Chen, Qiran Cai
{"title":"Thermal transport property of boron nitride nanosheets","authors":"Amrito Bhattacharjee, Hongbo Jiang, Lu Hua Li, Shaoming Huang, Ying Ian Chen, Qiran Cai","doi":"10.1063/5.0213741","DOIUrl":"https://doi.org/10.1063/5.0213741","url":null,"abstract":"The rapid progress of high-performance microelectronic devices underscores the urgent necessity to develop materials possessing superior thermal conductivity for effectively dissipating heat in cutting-edge electronics. Boron nitride nanosheets (BNNSs) have garnered significant attention due to their exceptional thermal conductivity, combined with electrical insulation and low thermal expansion coefficient, offering a promising solution to heat-related challenges in electronic devices. While BNNSs share some common thermal behaviors with other two-dimensional (2D) materials, they also exhibit unique characteristics. For instance, BNNSs exhibit larger isotope disorders compared to graphene, yet their isotope enhancement in thermal conductivity is lower than that of their carbon counterpart. This review provides an overview of the thermal transport properties and mechanisms of BNNSs explored over the past decade, beginning with a brief introduction to the basic of thermal conductivity. It then delves into the thermal transport mechanisms in BNNSs, highlighting factors impacting the in-plane thermal conductivity of BNNSs, as well as the cross-plane thermal conductivity and the factors influencing it. Finally, the review discusses challenges associated with BNNS thermal conductivity measurement and outlines potential future research avenues.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"1 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible magnetoelectric systems: Types, principles, materials, preparation and application 柔性磁电系统:类型、原理、材料、制备和应用
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-13 DOI: 10.1063/5.0220902
Shanfei Zhang, Zhuofan Li, Yizhuo Xu, Bin Su
{"title":"Flexible magnetoelectric systems: Types, principles, materials, preparation and application","authors":"Shanfei Zhang, Zhuofan Li, Yizhuo Xu, Bin Su","doi":"10.1063/5.0220902","DOIUrl":"https://doi.org/10.1063/5.0220902","url":null,"abstract":"Recently, the rapid development of flexible electronic materials and devices has profoundly influenced various aspects of social development. Flexible magnetoelectric systems (FMESs), leveraging magnetoelectric coupling, hold vast potential applications in the fields of flexible sensing, memory storage, biomedicine, energy harvesting, and soft robotics. Consequently, they have emerged as a significant branch within the realm of flexible electronic devices. According to its working principle, FMES are divided into three categories: FMES based on magnetodeformation and piezoelectric effects, FMES based on giant magnetoresistive effect, and FMES based on electromagnetic induction. Although some articles have reviewed the first two types of FMES, there is a lack of systematic introduction of the FMES based on electromagnetic induction in existing studies, especially the development history and research status of the three types of FMES. Therefore, this paper systematically reviews the development history and research status of these three kinds of FMES and reveals the working principle and mode of the flexible magnetoelectric system from the perspective of the force-electricity-magnetism coupling mode. In addition, the material selection criteria, device manufacturing methods, and application fields of the FMES are also introduced. Finally, this review delves into the challenges and opportunities confronting the development of FMES, exploring the future development directions. This review aims to establish a theoretical foundation and provide methodological strategies for future research on FMES. It is anticipated to promptly address the current gap in this research field and facilitate the development of the flexible electronic family.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"42 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in volatile organic compounds detection: From fundamental research to real-world applications 挥发性有机化合物检测的进展:从基础研究到实际应用
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-12 DOI: 10.1063/5.0230205
Hossam Haick
{"title":"Advances in volatile organic compounds detection: From fundamental research to real-world applications","authors":"Hossam Haick","doi":"10.1063/5.0230205","DOIUrl":"https://doi.org/10.1063/5.0230205","url":null,"abstract":"Volatile organic compounds (VOCs) play a crucial role in affecting health, environmental integrity, and industrial operations, from air quality to medical diagnostics. The need for highly sensitive and selective detection of these compounds has spurred innovation in sensor technologies. This editorial introduces a special collection of articles in Applied Physics Reviews, exploring the latest advancements in VOC detection technologies. The featured works cover a range of innovations, including electrostatically formed nanowires, chiral liquid crystals, and graphene-based sensors enhanced by machine learning. Together, these articles highlight the dynamic progress in VOC detection, striving for improved sensitivity, selectivity, and real-world applicability. This special collection not only showcases pioneering research but also provides valuable insights into future trends and potential applications in the field.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"19 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Room temperature single-photon terahertz detection with thermal Rydberg atoms 利用热里德伯原子进行室温单光子太赫兹探测
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-08 DOI: 10.1063/5.0219879
Danyang Li, Zhengyang Bai, Xiaoliang Zuo, Yuelong Wu, Jiteng Sheng, Haibin Wu
{"title":"Room temperature single-photon terahertz detection with thermal Rydberg atoms","authors":"Danyang Li, Zhengyang Bai, Xiaoliang Zuo, Yuelong Wu, Jiteng Sheng, Haibin Wu","doi":"10.1063/5.0219879","DOIUrl":"https://doi.org/10.1063/5.0219879","url":null,"abstract":"Single-photon terahertz (THz) detection is one of the most demanding technologies for a variety of fields and could lead to many breakthroughs. Although significant progress has been made in the past two decades, operating it at room temperature still remains a great challenge. Here, we demonstrate, for the first time, a room temperature THz detector at single-photon levels based on nonlinear wave mixing in thermal Rydberg atomic vapor. The low-energy THz photons are coherently upconverted to high-energy optical photons via a nondegenerate Rydberg state involved in a six-wave mixing process, and therefore, single-photon THz detection is achieved by a conventional optical single-photon counting module. The noise equivalent power of such a detector reaches 9.5 × 10−19 W/Hz1/2, which is more than four orders of magnitude lower than the state-of-the-art room temperature THz detectors. The optimum quantum efficiency of the whole-wave mixing process is about 4.3%, with 40.6 dB dynamic range, and the maximum conversion bandwidth is 172 MHz, which is all-optically controllable. The developed fast and continuous-wave single-photon THz detector at room temperature operation has a great potential for portability and chip-scale integration, and could be revolutionary for a wide range of applications in remote sensing, wireless communication, biomedical diagnostics, and quantum optics.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"46 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced oxygen evolution reaction in flexoelectric thin-film heterostructures 柔电薄膜异质结构中的强化氧进化反应
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-07 DOI: 10.1063/5.0215284
Jibo Xu, Xiaoyan Zhang, Xia Liu, Ming Wu, Junzhe Liu, Zhiyu Liu, Meiyue Li, Yuhao Yue, Yawen Xu, Chenyu Dong, Weijie Zheng, Lin Zhu, Yanqiang Cao, Chunyan Zheng, Jianyi Liu, Aidong Li, Di Wu, Lixue Zhang, Zheng Wen
{"title":"Enhanced oxygen evolution reaction in flexoelectric thin-film heterostructures","authors":"Jibo Xu, Xiaoyan Zhang, Xia Liu, Ming Wu, Junzhe Liu, Zhiyu Liu, Meiyue Li, Yuhao Yue, Yawen Xu, Chenyu Dong, Weijie Zheng, Lin Zhu, Yanqiang Cao, Chunyan Zheng, Jianyi Liu, Aidong Li, Di Wu, Lixue Zhang, Zheng Wen","doi":"10.1063/5.0215284","DOIUrl":"https://doi.org/10.1063/5.0215284","url":null,"abstract":"Recently, the flexoelectric effect has triggered considerable interest in energy-related applications, such as flexo-actuation, flexo-photovoltaic, and flexo-catalysis, because of its ubiquitous feature allowing the creation of electric polarity, i.e., the flexoelectric polarization (Pflexo), in non-polar materials by strain gradient. Here, we show a flexoelectric strategy in electrocatalytic water splitting. Remarkably enhanced oxygen evolution reaction (OER) properties are achieved in strain-gradient LaFeO3 (LFO) thin-film heterostructures owing to the promotion of kinetic processes by Pflexo. The improved OER is demonstrated by increased current density of ∼300% in linear sweep voltammetry and lowered charge transfer resistance by two orders of magnitude in electrochemical impedance spectroscopy. These are ascribed to the flexoelectric-induced downward bending of the LFO band, as revealed by density functional theory calculations and band structure measurements. With Pflexo in the thin-film heterostructure catalysts, the adsorption of hydroxyl ions is strengthened on the polar LFO surface, and the transfer of electrons is accelerated from the reactants/key intermediates to the catalyst across the band-tilted LFO layer. These findings indicate the significance of flexoelectric effect in OER kinetics and open a new perspective for exploiting catalytic mechanisms and performances in water splitting.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"9 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Device physics of perovskite light-emitting diodes 过氧化物发光二极管的器件物理学
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-06 DOI: 10.1063/5.0228117
Yuqi Sun, Si Chen, Jun-Yu Huang, Yuh-Renn Wu, Neil C. Greenham
{"title":"Device physics of perovskite light-emitting diodes","authors":"Yuqi Sun, Si Chen, Jun-Yu Huang, Yuh-Renn Wu, Neil C. Greenham","doi":"10.1063/5.0228117","DOIUrl":"https://doi.org/10.1063/5.0228117","url":null,"abstract":"Perovskite light-emitting diodes (LEDs) have emerged as a potential solution-processible technology that can offer efficient light emission with high color purity. Here, we explore the device physics of perovskite LEDs using simple analytical and drift-diffusion modeling, aiming to understand how the distribution of electric field, carrier densities, and recombination in these devices differs from those assumed in other technologies such as organic LEDs. High barriers to electron and hole extraction are responsible for the efficient recombination and lead to sharp build-up of electrons and holes close to the electron- and hole-blocking barriers, respectively. Despite the strongly varying carrier distributions, bimolecular recombination is surprisingly uniform throughout the device thickness, consistent with the assumption typically made in optical models. The current density is largely determined by injection from the metal electrodes, with a balance of electron and hole injection maintained by redistribution of electric field within the device by build-up of space charge.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"10 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring advanced microwave strategy for the synthesis of two-dimensional energy materials 探索合成二维能源材料的先进微波策略
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-06 DOI: 10.1063/5.0231081
Jingyan Cai, Zhiao Wu, Sangni Wang, Jiayue Guo, Miao Fan, Weilin Xu, Huanyu Jin, Jun Wan
{"title":"Exploring advanced microwave strategy for the synthesis of two-dimensional energy materials","authors":"Jingyan Cai, Zhiao Wu, Sangni Wang, Jiayue Guo, Miao Fan, Weilin Xu, Huanyu Jin, Jun Wan","doi":"10.1063/5.0231081","DOIUrl":"https://doi.org/10.1063/5.0231081","url":null,"abstract":"The rapid pace of technology and increasing energy demands underscore the urgent need for eco-friendly materials with exceptional energy conversion and storage capabilities. Two-dimensional (2D) energy materials, characterized by unique physicochemical properties, hold great promise in renewable energy conversion, catalysis, and electronics. Nevertheless, conventional synthesis methods often falter in balancing high quality, high yield, and cost-effectiveness, presenting substantial obstacles to their large-scale application. Microwave-assisted synthesis, characterized by its rapid and efficient process, emerges as a promising approach to surmount these limitations. This review meticulously examines the pivotal role of microwave-assisted synthesis in the preparation of 2D materials, highlighting its profound impact on enhancing material quality and production efficiency. By scrutinizing the unique physical properties of microwaves and their applications in material synthesis, the review elucidates the innovative contributions of microwave technology to materials science. Furthermore, it delves into the intricate influence of microwave parameter control on the synthesis process and resultant material properties, offering insight into the potential of microwave technology for the precise modulation of material structure and functionality. This comprehensive analysis underscores microwave-assisted synthesis as a viable solution for overcoming current challenges, thereby advancing the development of high-performance 2D energy materials.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"5 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-encoded photonic quantum states: Generation, processing, and applications 时间编码光子量子态:生成、处理和应用
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-05 DOI: 10.1063/5.0232085
Hao Yu, Alexander O. Govorov, Hai-Zhi Song, Zhiming Wang
{"title":"Time-encoded photonic quantum states: Generation, processing, and applications","authors":"Hao Yu, Alexander O. Govorov, Hai-Zhi Song, Zhiming Wang","doi":"10.1063/5.0232085","DOIUrl":"https://doi.org/10.1063/5.0232085","url":null,"abstract":"Encoding and processing quantum information in the time-of-arrival of photons offer significant advantages for quantum information science and technology. These advantages include ease of experimental realization, robustness over photon state transmission, and compatibility with existing telecommunication infrastructure. Additionally, time-of-arrival encoding has the potential for high-rate quantum communication and holds promise for the future development of quantum internet. This review explores the generation, processing, and applications of time-encoded quantum states, focusing on both single-photon states, energy–time entanglement, and time-bin entanglement. We summarize the nonlinear optics platforms and advanced laser and modulation techniques utilized for photon sources that enable quantum information encoding onto the photons' time-of-arrival. We also highlight advanced quantum state processing methods in the time domain, including the Franson interferometry, optical switch-based schemes, and state-of-the-art measurement and detection schemes that allow for high-speed and multi-dimensional quantum operations. Finally, we review the mainstream implementations mainly including the quantum communication demonstrations and outline future directions for developing practical quantum networks leveraging time-encoded photon states.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"1 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printing for sodium batteries: From material design to integrated devices 钠电池的 3D 打印:从材料设计到集成设备
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-05 DOI: 10.1063/5.0232592
Shuge Dai, Zhuanglong Lin, Hao Hu, Ye Wang, Longhui Zeng
{"title":"3D printing for sodium batteries: From material design to integrated devices","authors":"Shuge Dai, Zhuanglong Lin, Hao Hu, Ye Wang, Longhui Zeng","doi":"10.1063/5.0232592","DOIUrl":"https://doi.org/10.1063/5.0232592","url":null,"abstract":"Additive manufacturing, commonly known as 3D printing, is an innovative technique for fabricating batteries with arbitrary architectures. Understanding the intricacies of 3D printing designs in sodium battery materials is crucial for optimizing their electrochemical properties and unlocking the full potential of 3D printed sodium batteries. This review provides a comprehensive overview of the key aspects involved in the fabrication of 3D printed sodium batteries, encompassing material selectivity criterion, design considerations, and optimization strategies. Challenges and prospects for the fabrication of high-performance 3D printed sodium batteries are outlined, aiming to provide valuable insights into new conception and theoretical guidance for the design and performance optimization of composites by 3D printing for the practical application of sodium batteries in the future.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"28 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoarchitectured MOF-derived porous carbons: Road to future carbon materials 纳米结构 MOF 衍生多孔碳:通向未来碳材料之路
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-05 DOI: 10.1063/5.0213150
Minjun Kim, Kwang Keat Leong, Nasim Amiralian, Yoshio Bando, Tansir Ahamad, Saad M. Alshehri, Yusuke Yamauchi
{"title":"Nanoarchitectured MOF-derived porous carbons: Road to future carbon materials","authors":"Minjun Kim, Kwang Keat Leong, Nasim Amiralian, Yoshio Bando, Tansir Ahamad, Saad M. Alshehri, Yusuke Yamauchi","doi":"10.1063/5.0213150","DOIUrl":"https://doi.org/10.1063/5.0213150","url":null,"abstract":"This review aims to offer strategic synthesis of new carbon materials under the thematic concept of “nanoarchitectonics” applied to metal-organic framework (MOF)-derived porous carbons. The background tracing of carbon materials in terms of the development of carbon microstructure is outlined first to offer the microstructural level of understanding of traditional carbons as well as recent MOF-derived porous carbons. Subsequently, we present the discussion on the effect of nanopore size on the formation of an electrical double layer, and justify the electrochemical rationale behind the need for nanoarchitecturing of porous carbon materials. Traditional synthetic strategies of template-free and template-based methods and the previous porous carbon materials are also discussed as the potential synthetic methods and approaches available for nanoarchitecturing of MOF-derived porous carbons. Various examples of nanoarchitectured MOF-derived porous carbons are then presented and discussed based on the careful categorization into template-free methods including bottom–up and top–down approaches and template-based methods including hard- and soft-template approaches. This review therefore aims to summarize and extend the current knowledge of nanoarchitectured MOF-derived porous carbons to offer intuitions and innovations toward future carbon materials. We also offer future directions with considerations on the challenges and innovations in the current field of nanoarchitectured MOF-derived porous carbons.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"37 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信