Applied physics reviews最新文献

筛选
英文 中文
Progress in laser ultrasonics evaluation of micro- and nanoscale interfacial mechanics 激光超声波评估微米和纳米级界面力学的进展
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-01 DOI: 10.1063/5.0220082
Maroun Abi Ghanem, Thomas Dehoux
{"title":"Progress in laser ultrasonics evaluation of micro- and nanoscale interfacial mechanics","authors":"Maroun Abi Ghanem, Thomas Dehoux","doi":"10.1063/5.0220082","DOIUrl":"https://doi.org/10.1063/5.0220082","url":null,"abstract":"Understanding contact mechanics and adhesion processes in thin films and micro-structured materials is fundamental in phonon and heat transport phenomena and is ubiquitous for the miniaturization of mechanical and thermal devices as well as the design/functionalization of structured surfaces and membranes. Acoustic-based methods are of great interest in this context since they provide a nondestructive mean to probe interface quality and adhesion, at various scales. In particular, Laser Ultrasonics (LU) techniques allow the generation of broadband acoustic pulses with a frequency content extending up to a few THz due to the thermoelastic expansion induced by the absorption of short laser pulses. In this review, we will explore the specificities of the LU generation/detection schemes and the unusual wide frequency range that make these opto-acoustic techniques a unique tool to study adhesion processes from micro- to nanoscales, and in a variety of systems, ranging from continuous films and coatings to nano-objects. Because the size of the contact area with respect to the acoustic wavelength dictates the acoustic dispersion, we will describe separately continuous structures, in which the contact is large, before discussing micro- and nanostructured media, where the contact is localized.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":null,"pages":null},"PeriodicalIF":15.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metamaterials for high-performance photodetectors 用于高性能光电探测器的超材料
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-01 DOI: 10.1063/5.0223521
Xiwei Zhang, Wenzheng Li, Fengsong Xie, Ke Wang, Ganke Li, Shuli Liu, Mengyu Wang, Zhenjie Tang, Longhui Zeng
{"title":"Metamaterials for high-performance photodetectors","authors":"Xiwei Zhang, Wenzheng Li, Fengsong Xie, Ke Wang, Ganke Li, Shuli Liu, Mengyu Wang, Zhenjie Tang, Longhui Zeng","doi":"10.1063/5.0223521","DOIUrl":"https://doi.org/10.1063/5.0223521","url":null,"abstract":"Metamaterials, a kind of novel materials with artificial design, have exhibited extraordinary properties that cannot be found in nature. In the past decade, remarkable achievements have been made in the field of metamaterial-based photodetectors. However, there is hardly any systematic and thorough review of the metamaterials' recent development in photodetection devices. Herein, we summarized recent advances in the metamaterial-based photodetectors according to a dual role of metamaterials: enrichment of photodetection functionalities and enhancement of photodetection performance. To start with, we presented an overview of the relevant concept of metamaterials and explore their distinctive optical characteristics. Subsequently, we delved into the work mechanism and figures of merit of metamaterial-based photodetectors. Next, we highlighted various types of metamaterials as a flexible platform for advanced photodetection technology, including metasurface, graphene-metamaterial hybrids, patterned nanostructures, and van der Waals metamaterials. Finally, the challenges and outlook associated with future developments were systematically and deeply discussed based on the current state of research. We believe that this review will offer crucial insights and valuable guidance, paving the way for future advancements and in-depth investigations in the realm of metamaterial-based photodetectors.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":null,"pages":null},"PeriodicalIF":15.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gate control of superconducting current: Mechanisms, parameters, and technological potential 超导电流的栅极控制:机制、参数和技术潜力
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-10-31 DOI: 10.1063/5.0222371
L. Ruf, C. Puglia, T. Elalaily, G. De Simoni, F. Joint, M. Berke, J. Koch, A. Iorio, S. Khorshidian, P. Makk, S. Gasparinetti, S. Csonka, W. Belzig, M. Cuoco, F. Giazotto, E. Scheer, A. Di Bernardo
{"title":"Gate control of superconducting current: Mechanisms, parameters, and technological potential","authors":"L. Ruf, C. Puglia, T. Elalaily, G. De Simoni, F. Joint, M. Berke, J. Koch, A. Iorio, S. Khorshidian, P. Makk, S. Gasparinetti, S. Csonka, W. Belzig, M. Cuoco, F. Giazotto, E. Scheer, A. Di Bernardo","doi":"10.1063/5.0222371","DOIUrl":"https://doi.org/10.1063/5.0222371","url":null,"abstract":"In conventional metal-oxide semiconductor (CMOS) electronics, the logic state of a device is set by a gate voltage (VG). The superconducting equivalent of such effect had remained unknown until it was recently shown that a VG can tune the superconducting current (supercurrent) flowing through a nanoconstriction in a superconductor. This gate-controlled supercurrent (GCS) can lead to superconducting logics like CMOS logics, but with lower energy dissipation. The physical mechanism underlying the GCS, however, remains under debate. In this review article, we illustrate the main mechanisms proposed for the GCS, and the material and device parameters that mostly affect it based on the evidence reported. We conclude that different mechanisms are at play in the different studies reported so far. We then outline studies that can help answer open questions on the effect and achieve control over it, which is key for applications. We finally give insights into the impact that the GCS can have toward high-performance computing with low-energy dissipation and quantum technologies.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":null,"pages":null},"PeriodicalIF":15.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inorganic nanosheets-based electro-optic devices with single-pixel full-color and gray scale control 基于无机纳米片的单像素全彩和灰度控制电光器件
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-10-31 DOI: 10.1063/5.0219299
Zhiwei Chen, Zhigang Zhao, Ling Ding, Yaowu Li, Yanan Zhang, Zhenyong Wang, Jinyu Zhou, Ruijia Wang, Wenbin Gong, Zhaochuan Fan, Song Chen, Xiaohong Zhang, Fengxia Geng
{"title":"Inorganic nanosheets-based electro-optic devices with single-pixel full-color and gray scale control","authors":"Zhiwei Chen, Zhigang Zhao, Ling Ding, Yaowu Li, Yanan Zhang, Zhenyong Wang, Jinyu Zhou, Ruijia Wang, Wenbin Gong, Zhaochuan Fan, Song Chen, Xiaohong Zhang, Fengxia Geng","doi":"10.1063/5.0219299","DOIUrl":"https://doi.org/10.1063/5.0219299","url":null,"abstract":"Developing single-pixel full-color liquid crystal displays (LCDs) that do not require orientation layers and color filters is highly desirable since this would allow to better optimize their image resolution and light utilization efficiency while considerably reducing fabrication cost. However, so far, organic polymers have shown only limited color modulation range and inorganic materials have mostly been limited to on-and-off switches. Here, we report single-pixel full-color modulation along with gray scale control in electrically responsive two-dimensional (2D) inorganic sheets using α-ZrP and Ca2Nb3O10 as our model materials. We demonstrate modulation of transmitted light spanning the entire visible spectrum at an ultralow driving electric field strength (below 10.4 V mm−1), which is one to two orders of magnitude lower than required for conventional organic liquid crystals. We attribute this unusually high performance to the surface charge, the ultra-small thickness, and the large electro-optic anisotropy of the 2D sheets used in this study. To the best of our knowledge, this is the first demonstration of an LCD that efficiently combines gray scale and full-color modulation without the need for color filters or orientation layers. Our work thus opens the door to new types of LCDs and the simplicity of our setup allows its potential integration in various other information and image display systems.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":null,"pages":null},"PeriodicalIF":15.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid nitrogen temperature to 700 K Bi3+ thermoluminescence: Toward wide-temperature-range light dosimeters for versatile anti-counterfeiting, information storage, and x-ray imaging 液氮温度至 700 K 的 Bi3+ 热发光:面向多功能防伪、信息存储和 X 射线成像的宽温度范围光剂量计
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-10-31 DOI: 10.1063/5.0224280
Tianshuai Lyu, Pieter Dorenbos
{"title":"Liquid nitrogen temperature to 700 K Bi3+ thermoluminescence: Toward wide-temperature-range light dosimeters for versatile anti-counterfeiting, information storage, and x-ray imaging","authors":"Tianshuai Lyu, Pieter Dorenbos","doi":"10.1063/5.0224280","DOIUrl":"https://doi.org/10.1063/5.0224280","url":null,"abstract":"Discovering light dosimeters that can function effectively from liquid nitrogen temperature to 700 K presents significant challenges. Such dosimeters facilitate a range of cutting-edge applications, including anti-counterfeiting measures at low temperature for cryo-preservation. To facilitate such discovery, stacked vacuum referred binding energy diagrams for the LiYGeO4 cluster of crystals have been first constructed. They offer a robust method for controlling both electron and hole trapping depth in the LiYGeO4 cluster of crystals. Wide temperature shifting of Bi2+ and Eu2+ thermoluminescence (TL) glow bands emerges from 200 to 500 K for LiYxLu1-xGeO4:0.01Bi3+ and LiYxLu1-xGeO4:0.01Bi3+, 0.001Eu3+, by changing x, facilitating conduction band tailoring. Wide temperature shifting of Bi4+ TL glow bands emerges from 300 to 700 K for LiYGezSi1-zO4:0.01Bi3+, by tuning z, facilitating valence band tailoring. TL glow band peaks near 135, 185, 232, and 311 K emerge in LiyNa1-yYGeO4: 0.001Bi3+. Particularly, the discovered Bi3+ or/and lanthanide modified LiYGeO4 cluster of crystals exhibit superior charge carrier storage capacity and minimal TL fading properties. For instance, the ratio of TL intensity of the optimized LiYGe0.75Si0.25O4:0.001Bi3+ to that of industrial BaFBr(I):Eu2+ is as high as ∼4. Interestingly, imaging of intense optically driven Bi3+ ultraviolet-A (UVA) luminescence has been validated in 254 nm energized LiY0.25Lu0.75GeO4:0.01Bi3+ with a 100 lux white LED illumination. Together with ZnS:Mn2+, LiTaO3:Bi3+, Sm3+, and Cs2ZrCl6:Sb3+ perovskites, the realization of wide range liquid nitrogen temperature to 700 K Bi3+ thermoluminescence in Bi3+ or/and lanthanide modified LiYGeO4 cluster of crystals with superior charge carrier storage capacity offers promising use for versatile anti-counterfeiting, information storage, and delayed x-ray imaging purposes.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":null,"pages":null},"PeriodicalIF":15.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superorders and terahertz acoustic modes in multiferroic BiFeO3/LaFeO3 superlattices 多铁性 BiFeO3/LaFeO3 超晶格中的超阶和太赫兹声学模式
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-10-29 DOI: 10.1063/5.0203076
R. Gu, R. Xu, F. Delodovici, B. Carcan, M. Khiari, G. Vaudel, V. Juvé, M. C. Weber, A. Poirier, P. Nandi, B. Xu, V. E. Gusev, L. Bellaiche, C. Laulhé, N. Jaouen, P. Manuel, B. Dkhil, C. Paillard, L. Yedra, H. Bouyanfif, P. Ruello
{"title":"Superorders and terahertz acoustic modes in multiferroic BiFeO3/LaFeO3 superlattices","authors":"R. Gu, R. Xu, F. Delodovici, B. Carcan, M. Khiari, G. Vaudel, V. Juvé, M. C. Weber, A. Poirier, P. Nandi, B. Xu, V. E. Gusev, L. Bellaiche, C. Laulhé, N. Jaouen, P. Manuel, B. Dkhil, C. Paillard, L. Yedra, H. Bouyanfif, P. Ruello","doi":"10.1063/5.0203076","DOIUrl":"https://doi.org/10.1063/5.0203076","url":null,"abstract":"Superlattices are materials created by the alternating growth of two chemically different materials. The direct consequence of creating a superlattice is the folding of the Brillouin zone, which gives rise to additional electronic bands and phonon modes. This phenomenon has been successfully exploited to achieve new transport and optical properties in semiconductor superlattices. Here, we show that multiferroic BiFeO3/LaFeO3 superlattices exhibit several structural orders parallel and perpendicular to the growth direction, not existing in individual bulk materials. Using transmission electron microscopy, x-ray diffraction, and first-principles calculations, we reveal in particular a new long-range order of tilted FeO6 octahedra, with a period along the growth direction about twice that of the chemical supercell, i.e., a superorder. The effect of this new structural order on the phonon dynamics is studied with ultrafast optical pump-probe experiments. While a folded-mode at 1.2 THz is attributed solely to the chemical modulation of the superlattice, the existence of another 0.7 THz mode seems to be explained only by a double Brillouin zone folding in agreement with the structural out-of-plane superorder. Our work shows that multiferroic BiFeO3/LaFeO3 superlattices can be used to tune the spectrum of coherent THz phonons, and potentially that of magnons or electromagnons.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":null,"pages":null},"PeriodicalIF":15.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibonding valence states induce low lattice thermal conductivity in metal halide semiconductors 金属卤化物半导体中的反键价态诱发低晶格热导率
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-10-28 DOI: 10.1063/5.0227080
Mohammad Ubaid, Paribesh Acharyya, Suneet K. Maharana, Kanishka Biswas, Koushik Pal
{"title":"Antibonding valence states induce low lattice thermal conductivity in metal halide semiconductors","authors":"Mohammad Ubaid, Paribesh Acharyya, Suneet K. Maharana, Kanishka Biswas, Koushik Pal","doi":"10.1063/5.0227080","DOIUrl":"https://doi.org/10.1063/5.0227080","url":null,"abstract":"Reduction of phonon mediated thermal transport properties, i.e., lattice thermal conductivity (κL), of semiconductors can strongly affect the performance of thermoelectrics and optoelectronics. Although extrinsic routes to reduce κL have been achieved through selective scattering of phonons via doping, alloying, and hierarchical nano-structuring, semiconductors with intrinsically low κL have recently gained widespread attention due to their ability to decouple electronic and phonon transports. While innate low κL in crystalline semiconductors is a desired requirement to achieve high performance thermoelectrics, the solar upconversion efficiency of photovoltaics based on metal halide perovskites (MHPs) have been shown to increase due to their ultralow κL through the hot-phonon bottleneck effect. Therefore, understanding the microscopic mechanisms underlying ultralow κL in crystalline semiconductors is extremely important. Several structural factors that are intrinsic to a material have been shown to strongly influence the reduction of κL. Among them, the presence of rattling atoms, lone-pair electrons, and large lattice anharmonicity have been widely studied. Here, we bring out yet another largely unexplored intrinsic characteristic of materials related to the filled antibonding valence states (AVS) near the Fermi level, which are shown to induce low κL in crystalline compounds. We focus our review on an emerging class of compounds–metal halide semiconductors including MHPs and investigate the interplay between structures, chemical bonding and κL, carefully curating from literature a list of 33 compounds having different structure dimensionality with known κL. We established a universal connection between the elastic moduli, speeds of sound, and κL with the presence of AVS just below the Fermi level. We found that large peak in the AVS correlates positively with lower values of elastic moduli, speeds of sound, and κL, providing antibonding states based design criteria of low-κL compounds. Furthermore, we discuss different synthesis strategies, which are crucial for experimental realization of ultralow κL through structure manipulation. Additionally, we outline how chemical bonding data can be utilized in machine learning models for predictive modeling of κL. We hope that our approach of understanding low-κL through the viewpoint of chemical bonding theory would encourage exploration of phonon transport properties in other families of materials having filled AVS that can provide further insights on the structure-bonding-property relationships aiding novel materials design approaches.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":null,"pages":null},"PeriodicalIF":15.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy conversion and transport in molecular-scale junctions 分子尺度连接中的能量转换和传输
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-10-28 DOI: 10.1063/5.0225756
Haixin Zhang, Yunxuan Zhu, Ping Duan, Mehrdad Shiri, Sai Chandra Yelishala, Shaocheng Shen, Ziqi Song, Chuancheng Jia, Xuefeng Guo, Longji Cui, Kun Wang
{"title":"Energy conversion and transport in molecular-scale junctions","authors":"Haixin Zhang, Yunxuan Zhu, Ping Duan, Mehrdad Shiri, Sai Chandra Yelishala, Shaocheng Shen, Ziqi Song, Chuancheng Jia, Xuefeng Guo, Longji Cui, Kun Wang","doi":"10.1063/5.0225756","DOIUrl":"https://doi.org/10.1063/5.0225756","url":null,"abstract":"Molecular-scale junctions (MSJs) have been considered the ideal testbed for probing physical and chemical processes at the molecular scale. Due to nanometric confinement, charge and energy transport in MSJs are governed by quantum mechanically dictated energy profiles, which can be tuned chemically or physically with atomic precision, offering rich possibilities beyond conventional semiconductor devices. While charge transport in MSJs has been extensively studied over the past two decades, understanding energy conversion and transport in MSJs has only become experimentally attainable in recent years. As demonstrated recently, by tuning the quantum interplay between the electrodes, the molecular core, and the contact interfaces, energy processes can be manipulated to achieve desired functionalities, opening new avenues for molecular electronics, energy harvesting, and sensing applications. This Review provides a comprehensive overview and critical analysis of various forms of energy conversion and transport processes in MSJs and their associated applications. We elaborate on energy-related processes mediated by the interaction between the core molecular structure in MSJs and different external stimuli, such as light, heat, electric field, magnetic field, force, and other environmental cues. Key topics covered include photovoltaics, electroluminescence, thermoelectricity, heat conduction, catalysis, spin-mediated phenomena, and vibrational effects. The review concludes with a discussion of existing challenges and future opportunities, aiming to facilitate in-depth future investigation of promising experimental platforms, molecular design principles, control strategies, and new application scenarios.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":null,"pages":null},"PeriodicalIF":15.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal transport in metal halide perovskites and other third-generation photovoltaic materials 金属卤化物过氧化物和其他第三代光伏材料中的热传输
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-10-25 DOI: 10.1063/5.0226632
Du Chen, Shunran Li, Bowen Li, Peijun Guo
{"title":"Thermal transport in metal halide perovskites and other third-generation photovoltaic materials","authors":"Du Chen, Shunran Li, Bowen Li, Peijun Guo","doi":"10.1063/5.0226632","DOIUrl":"https://doi.org/10.1063/5.0226632","url":null,"abstract":"Third-generation photovoltaic materials, including metal halide perovskites (MHPs), colloidal quantum dots (QDs), copper zinc tin sulfide (CZTS), and organic semiconductors, among others, have become attractive in the past two decades. Unlike their first- and second-generation counterparts, these advanced materials boast properties beyond mere photovoltaic performance, such as mechanical flexibility, light weight, and cost-effectiveness. Meanwhile, these materials possess more intricate crystalline structures that aid in understanding and predicting their transport properties. In particular, the distinctive phonon dispersions in MHPs, the layered architecture in quasi-two-dimensional (2D) perovskites, the strong quantum confinement in QDs, and the complex crystal structures interspersed with abundant disorders in quaternary CZTS result in unique and sometimes anomalous thermal transport behaviors. Concurrently, the criticality of thermal management in applications such as photovoltaics, thermoelectrics, light emitting diodes, and photodetection devices has received increased recognition, considering that many of these third-generation photovoltaic materials are not good thermal conductors. Effective thermal management necessitates precise measurement, advanced modeling, and a profound understanding and interpretation of thermal transport properties in these novel materials. In this review, we provide a comprehensive summary of various techniques for measuring thermal transport properties of these materials and discuss the ultralow thermal conductivities of three-dimensional (3D) MHPs, superlattice-like thermal transport in 2D perovskites, and novel thermal transport characteristics inherent in QDs and CZTS. By collecting and comparing the literature-reported results, we offer a thorough discussion on the thermal transport phenomenon in these materials. The collective understanding from the literature in this area, as reviewed in this article, can provide guidance for improving thermal management across a wide spectrum of applications extending beyond photovoltaics.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":null,"pages":null},"PeriodicalIF":15.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoarchitectonics of highly flexible iron-oxide nanoporous electrodes on stainless steel substrate for wearable supercapacitors 用于可穿戴式超级电容器的不锈钢基底上高柔性氧化铁纳米多孔电极的纳米体系结构
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-10-25 DOI: 10.1063/5.0225825
Tao Feng, Xinglin Luo, Zhuohao Liu, Xingwang Liu, Xiaohui Yan, Gang Li, Wenlei Zhang, Kaiying Wang
{"title":"Nanoarchitectonics of highly flexible iron-oxide nanoporous electrodes on stainless steel substrate for wearable supercapacitors","authors":"Tao Feng, Xinglin Luo, Zhuohao Liu, Xingwang Liu, Xiaohui Yan, Gang Li, Wenlei Zhang, Kaiying Wang","doi":"10.1063/5.0225825","DOIUrl":"https://doi.org/10.1063/5.0225825","url":null,"abstract":"Flexible electrode is crucial for wearable electronic devices. To prevent performance degradation due to bending or stretching, the development of highly flexible and durable materials is imperative. Here, we address this challenge by selecting stainless-steel electrodes with excellent stability and flexibility. Through an anodization process on the stainless steel, we created an integrated flexible iron oxide electrode. Chemical vapor deposition and ion implantation were employed to develop concentration-controllable N-doped iron oxide electrodes. Comparative analysis highlights the outstanding performance of ion-implanted electrodes, with a specific capacitance increase of up to 3.01 times (332.375 mF cm−2) at 1 mA cm−2. The N-doped electrode exhibits a capacitance retention of 76.67% after 8000 cycles. Density functional theory calculations reveal N-induced lattice distortion, enhancing ion transport and reducing the bandgap. Leveraging these insights, a flexible asymmetric supercapacitor is assembled, demonstrating exceptional stability and capacitance characteristics across different voltages. The flexibility of the stainless-steel substrate enables the FSC to maintain capacitive performance during bending. This research presents a promising solution for high-performance and stable capacitors in electrochemical energy storage applications.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":null,"pages":null},"PeriodicalIF":15.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信