{"title":"超高频、宽频带和小型化声波滤波器的进展和未来展望","authors":"Rui Ding, Danyu Mu, Weipeng Xuan, Feng Gao, Haimeng Wu, Weijun Zhu, Huaping Zhang, Jikui Luo, Yuanjin Zheng, Shurong Dong, Yongqing Fu","doi":"10.1063/5.0277777","DOIUrl":null,"url":null,"abstract":"Radio frequency (RF) filters for communication have been developed rapidly, driven by new communication standards and the dramatic expansion of wide-range applications. Although they are currently playing crucial roles in applications such as mobile communication, space-to-ground communication, and the Internet of Thing, there are significantly stringent and challenging requirements demanded for their rapid and successful applications. Compared with conventionally adopted low-temperature co-fired ceramics, integrated passive device filters, and dielectric filters, acoustic wave filters have been regarded as the competitive choice, mainly attributed to their wide bandwidth, small size, and low insertion loss. This paper reviews the advances and outlines future perspectives of high frequency acoustic wave devices for RF communication, focusing on several critical issues including bandwidth, roll-off, frequency, power-handling, insertion loss, out-of-band rejection, tunability, and size/package. It is focused mainly on the extreme performance breakthroughs of RF acoustic wave filter, e.g., how to achieve acoustic devices with operating frequency above 8 GHz, bandwidth around 1 GHz, and quality factor exceeding 2000. Various principles, strategies, and technologies for achieving the superior performance of super-high frequency RF filters are discussed, e.g., applying advanced materials such as scandium-doped AlN or single crystals of AlN and LiNbO3, creating new topology structures such as hybrid filters, and generating new types of vibration modes of acoustic waves.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"94 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances and future perspectives for super-high frequency, wide-band, and miniaturized acoustic wave filters\",\"authors\":\"Rui Ding, Danyu Mu, Weipeng Xuan, Feng Gao, Haimeng Wu, Weijun Zhu, Huaping Zhang, Jikui Luo, Yuanjin Zheng, Shurong Dong, Yongqing Fu\",\"doi\":\"10.1063/5.0277777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio frequency (RF) filters for communication have been developed rapidly, driven by new communication standards and the dramatic expansion of wide-range applications. Although they are currently playing crucial roles in applications such as mobile communication, space-to-ground communication, and the Internet of Thing, there are significantly stringent and challenging requirements demanded for their rapid and successful applications. Compared with conventionally adopted low-temperature co-fired ceramics, integrated passive device filters, and dielectric filters, acoustic wave filters have been regarded as the competitive choice, mainly attributed to their wide bandwidth, small size, and low insertion loss. This paper reviews the advances and outlines future perspectives of high frequency acoustic wave devices for RF communication, focusing on several critical issues including bandwidth, roll-off, frequency, power-handling, insertion loss, out-of-band rejection, tunability, and size/package. It is focused mainly on the extreme performance breakthroughs of RF acoustic wave filter, e.g., how to achieve acoustic devices with operating frequency above 8 GHz, bandwidth around 1 GHz, and quality factor exceeding 2000. Various principles, strategies, and technologies for achieving the superior performance of super-high frequency RF filters are discussed, e.g., applying advanced materials such as scandium-doped AlN or single crystals of AlN and LiNbO3, creating new topology structures such as hybrid filters, and generating new types of vibration modes of acoustic waves.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0277777\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0277777","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Advances and future perspectives for super-high frequency, wide-band, and miniaturized acoustic wave filters
Radio frequency (RF) filters for communication have been developed rapidly, driven by new communication standards and the dramatic expansion of wide-range applications. Although they are currently playing crucial roles in applications such as mobile communication, space-to-ground communication, and the Internet of Thing, there are significantly stringent and challenging requirements demanded for their rapid and successful applications. Compared with conventionally adopted low-temperature co-fired ceramics, integrated passive device filters, and dielectric filters, acoustic wave filters have been regarded as the competitive choice, mainly attributed to their wide bandwidth, small size, and low insertion loss. This paper reviews the advances and outlines future perspectives of high frequency acoustic wave devices for RF communication, focusing on several critical issues including bandwidth, roll-off, frequency, power-handling, insertion loss, out-of-band rejection, tunability, and size/package. It is focused mainly on the extreme performance breakthroughs of RF acoustic wave filter, e.g., how to achieve acoustic devices with operating frequency above 8 GHz, bandwidth around 1 GHz, and quality factor exceeding 2000. Various principles, strategies, and technologies for achieving the superior performance of super-high frequency RF filters are discussed, e.g., applying advanced materials such as scandium-doped AlN or single crystals of AlN and LiNbO3, creating new topology structures such as hybrid filters, and generating new types of vibration modes of acoustic waves.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.