M. Gersemann, A. Rajagopalan, M. Abidi, P. Barbey, A. Sabu, X. Chen, N. B. Weddig, B. Tennstedt, J. Petring, N. Droese, A. Kassner, C. Künzler, L. Keinert, X. Xiao, F. Dencker, M. C. Wurz, A. Löwer, E. von Hinüber, D. Schlippert, E. M. Rasel, S. Schön, S. Abend
{"title":"Developments for quantum inertial navigation systems employing Bose–Einstein condensates","authors":"M. Gersemann, A. Rajagopalan, M. Abidi, P. Barbey, A. Sabu, X. Chen, N. B. Weddig, B. Tennstedt, J. Petring, N. Droese, A. Kassner, C. Künzler, L. Keinert, X. Xiao, F. Dencker, M. C. Wurz, A. Löwer, E. von Hinüber, D. Schlippert, E. M. Rasel, S. Schön, S. Abend","doi":"10.1063/5.0250666","DOIUrl":null,"url":null,"abstract":"Quantum technology became a new tool for navigation based on measuring accelerations and rotations. However, the full potential of atom interferometers that operate with ultracold atoms has not yet been exploited. This paper presents current developments in the field of generation and application of Bose–Einstein condensates for inertial navigation. It covers the advancements in the form of atom chip and compact vacuum technology, classical sensor hybridization, and a multi-axis atom interferometry technique. In addition, the synergies of combining quantum sensors with classical inertial measurement units and their implications for navigation trajectories are discussed.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"2 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0250666","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum technology became a new tool for navigation based on measuring accelerations and rotations. However, the full potential of atom interferometers that operate with ultracold atoms has not yet been exploited. This paper presents current developments in the field of generation and application of Bose–Einstein condensates for inertial navigation. It covers the advancements in the form of atom chip and compact vacuum technology, classical sensor hybridization, and a multi-axis atom interferometry technique. In addition, the synergies of combining quantum sensors with classical inertial measurement units and their implications for navigation trajectories are discussed.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.