Applied physics reviews最新文献

筛选
英文 中文
Quantum dot in perovskite hybrids for photovoltaics: Progress and perspective 光伏用钙钛矿混合材料中的量子点:进展与展望
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-12-05 DOI: 10.1063/5.0218208
Hyung Ryul You, Han Na Yu, Eon Ji Lee, Hyeon Soo Ma, Younghoon Kim, Jongmin Choi
{"title":"Quantum dot in perovskite hybrids for photovoltaics: Progress and perspective","authors":"Hyung Ryul You, Han Na Yu, Eon Ji Lee, Hyeon Soo Ma, Younghoon Kim, Jongmin Choi","doi":"10.1063/5.0218208","DOIUrl":"https://doi.org/10.1063/5.0218208","url":null,"abstract":"Colloidal quantum dots (CQDs) are receiving great attention as promising nanomaterials for optoelectronic applications due to their unique electronic properties and straightforward processability. Despite extensive global research and significant progress in the surface chemistry and device architecture of CQDs, meeting the future demands for stability and device performance continues to be a challenge. Recently, innovative matrix engineering strategies that introduce a dot-in-perovskite structure have been recognized as breakthroughs in overcoming these challenges. This review chronicles the advancements of CQD-perovskite hybrids and discusses future perspectives, particularly regarding lead sulfide (PbS) CQDs for infrared photovoltaic applications.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"4 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive overview of detection mechanisms for toxic gases based on surface acoustic wave technology 基于表面声波技术的有毒气体检测机制综述
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-12-04 DOI: 10.1063/5.0232838
Xue Li, Qingyi Feng, Yuanjun Guo, Haifeng Lv, Xiaotao Zu, Yongqing Fu
{"title":"Comprehensive overview of detection mechanisms for toxic gases based on surface acoustic wave technology","authors":"Xue Li, Qingyi Feng, Yuanjun Guo, Haifeng Lv, Xiaotao Zu, Yongqing Fu","doi":"10.1063/5.0232838","DOIUrl":"https://doi.org/10.1063/5.0232838","url":null,"abstract":"Identification and detection of toxic/explosive environmental gases are of paramount importance to various sectors such as oil/gas industries, defense, industrial processing, and civilian security. Surface acoustic wave (SAW)-based gas sensors have recently gained significant attention, owing to their desirable sensitivity, fast response/recovery time, wireless capabilities, and reliability. For detecting various types of targeted gases, SAW sensors with different device structures and sensitive materials have been developed with diversified working mechanisms. This paper is focused on overviewing recent advances in working mechanisms and theories of dominant sensitive materials and key mechanisms/principles for targeting various gases in the realm of SAW gas sensors. The basic sensing theories and parameters of SAW gas sensors are briefly discussed, and then the major influencing factors are systematically reviewed, including the effects of various sensitive layer materials, temperature/humidity, and UV illumination on the overall performance of SAW gas sensors. We further highlight the relationships and adsorption/desorption principles between sensing materials and key targeted gases, including NH3, NO2, H2S, explosive gases of H2, and 2,4,6-trinitrotoluene, and organic gases of isopropanol, ethanol, and acetone, as well as others gases of CO, SO2, and HCl. Finally, we discuss key challenges and future outlooks in designing methodologies of sensing materials and enhancing the performance of SAW gas sensors, offering fundamental guidance for developing SAW gas sensors with good sensing performance.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"27 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarization-rotation-driven modulation of second harmonic generation in van der Waals layered ferroelectric CuInP2S6 范德华层状铁电CuInP2S6中二次谐波的极化-旋转驱动调制
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-12-04 DOI: 10.1063/5.0230814
Yiqi Hu, Han Gao, Zhou Zhou, Shun Wang, Qiankun Li, Zhongshen Luo, Runcang Feng, Yanfei Hou, Tianhao Ying, Yuyan Weng, Yibo Han, Liang Fang, Lu You
{"title":"Polarization-rotation-driven modulation of second harmonic generation in van der Waals layered ferroelectric CuInP2S6","authors":"Yiqi Hu, Han Gao, Zhou Zhou, Shun Wang, Qiankun Li, Zhongshen Luo, Runcang Feng, Yanfei Hou, Tianhao Ying, Yuyan Weng, Yibo Han, Liang Fang, Lu You","doi":"10.1063/5.0230814","DOIUrl":"https://doi.org/10.1063/5.0230814","url":null,"abstract":"Two-dimensional van der Waals (vdW) ferroelectrics, renowned for their spontaneous breaking of inversion symmetry and finite electric polarization, are pivotal in nonlinear optics and low-power nanoelectronics. Prior studies primarily focused on materials exhibiting out-of-plane or in-plane ferroelectric polarization, whose rotational degrees of freedom are commonly overlooked. Herein, we experimentally validate the existence of a weak yet symmetry-allowed in-plane polarization in the low-symmetry vdW ferroelectric CuInP2S6 by rigorous structural analysis and vectorial property characterizations. Remarkably, the magnitude of this in-plane polarization is tunable via an interface-induced electric field, leading to a significant contrast in second harmonic generation between oppositely polarized domains. Based on this unique rotational capability of electric polarization, we demonstrate an electrically tunable second-order optical emission in a fabricated vdW ferroelectric capacitor. Our findings highlight the intricate interplay between crystal symmetry and tensorial physical properties, providing a novel pathway for manipulating nonlinear optical functionalities in vdW layered ferroelectrics.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"19 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metamaterials for high-performance smart sensors 高性能智能传感器的超材料
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-12-04 DOI: 10.1063/5.0232606
Renquan Guan, Hao Xu, Zheng Lou, Zhao Zhao, Lili Wang
{"title":"Metamaterials for high-performance smart sensors","authors":"Renquan Guan, Hao Xu, Zheng Lou, Zhao Zhao, Lili Wang","doi":"10.1063/5.0232606","DOIUrl":"https://doi.org/10.1063/5.0232606","url":null,"abstract":"In recent years, metamaterials have shown great potential in various fields such as optics, acoustics, and electromagnetics. Sensors based on metamaterials have been gradually applied in daily production, life, and military. Metamaterials are artificial materials with unique properties that ordinary materials do not possess. Through clever microstructure design, they can achieve different properties and have demonstrated significant potential in areas like holographic projection, absorbing materials, and super-resolution microscopy. Sensors are devices that convert external environmental changes into recognizable signals, playing a crucial role in various fields such as healthcare, industry, and military. Therefore, the development of sensors with high sensitivity, low detection limit, wide detection range, and easy integration is of great significance. Sensors based on metamaterials can not only achieve these improvements but also offer advantages like anti-interference and stealth sensing, which traditional sensors lack. These enhancements and new features are significant for the sensor field's development. This article summarizes the benefits of metamaterial sensors in terms of increased sensitivity, expanded detection range, and ease of system integration. It also systematically discusses their applications in various fields such as biomedical and gas sensing. The focus is on the potential applications and development trends of metamaterial-based sensors in the future of human life, providing systematic guidance for the field's advancement.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"79 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluid mechanics of Na-Zn liquid metal batteries Na-Zn液态金属电池的流体力学
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-12-04 DOI: 10.1063/5.0225593
C. Duczek, G. M. Horstmann, W. Ding, K. E. Einarsrud, A. Y. Gelfgat, O. E. Godinez-Brizuela, O. S. Kjos, S. Landgraf, T. Lappan, G. Monrrabal, W. Nash, P. Personnettaz, M. Sarma, C. Sommerseth, P. Trtik, N. Weber, T. Weier
{"title":"Fluid mechanics of Na-Zn liquid metal batteries","authors":"C. Duczek, G. M. Horstmann, W. Ding, K. E. Einarsrud, A. Y. Gelfgat, O. E. Godinez-Brizuela, O. S. Kjos, S. Landgraf, T. Lappan, G. Monrrabal, W. Nash, P. Personnettaz, M. Sarma, C. Sommerseth, P. Trtik, N. Weber, T. Weier","doi":"10.1063/5.0225593","DOIUrl":"https://doi.org/10.1063/5.0225593","url":null,"abstract":"Liquid metal batteries have been introduced as promising option to address the needs for new energy storage technologies. Currently, batteries based on sodium and zinc are under development and a favorable option due to their high theoretical cell potential, readily abundant materials, and cost-advantages. Nevertheless, they face the problem of self-discharge, which makes it inevitable to understand fluid dynamics in the whole cell. Motivated by that, several types of fluid mechanic instabilities in Na-Zn liquid metal batteries are identified and discussed here. On the one hand they can jeopardize secure operation, but on the other hand they can also improve mixing and increase the cell efficiency. In doing so, realistic cell as well as operation parameters are included and dimensionless numbers for identifying critical conditions are presented. The phenomena with highest significance for the discussed batteries are solutal convection, swirling flow, electrocapillary Marangoni convection, and droplet formation. Still, many open research questions remain and we aim at motivating researchers to dig deeper into some of these topics to contribute to an improved cell design and performance.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"35 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunities and challenges involving repulsive Casimir forces in nanotechnology 纳米技术中涉及卡西米尔斥力的机遇和挑战
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-12-03 DOI: 10.1063/5.0218274
C. Shelden, B. Spreng, J. N. Munday
{"title":"Opportunities and challenges involving repulsive Casimir forces in nanotechnology","authors":"C. Shelden, B. Spreng, J. N. Munday","doi":"10.1063/5.0218274","DOIUrl":"https://doi.org/10.1063/5.0218274","url":null,"abstract":"The Casimir force, which arises from quantum electrodynamic fluctuations, manifests as an attraction between metallic surfaces spaced mere hundreds of nanometers apart. As contemporary device architectures scale down to the nano- and microscales, quantum phenomena exert increasing influence on their behaviors. Nano- and microelectromechanical systems frequently encounter issues such as components adhering or collapsing due to the typically attractive Casimir interactions. Consequently, significant efforts have been devoted to manipulating Casimir forces, aiming to transition them from attractive to repulsive. This ability holds promise for mitigating component collapse in nanodevices and facilitating the realization of quantum levitation and ultralow friction devices. Four primary strategies have been proposed for engineering repulsive Casimir forces: employing liquid media, magnetic materials, thermodynamic nonequilibrium conditions, and specialized geometries. In this review, we examine these approaches for engineering repulsive Casimir forces, analyzing their experimental feasibility, and discussing potential implementations.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"14 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(Ultra)wide bandgap semiconductor heterostructures for electronics cooling (用于电子冷却的(超)宽带隙半导体异质结构
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-25 DOI: 10.1063/5.0185305
Zhe Cheng, Zifeng Huang, Jinchi Sun, Jia Wang, Tianli Feng, Kazuki Ohnishi, Jianbo Liang, Hiroshi Amano, Ru Huang
{"title":"(Ultra)wide bandgap semiconductor heterostructures for electronics cooling","authors":"Zhe Cheng, Zifeng Huang, Jinchi Sun, Jia Wang, Tianli Feng, Kazuki Ohnishi, Jianbo Liang, Hiroshi Amano, Ru Huang","doi":"10.1063/5.0185305","DOIUrl":"https://doi.org/10.1063/5.0185305","url":null,"abstract":"The evolution of power and radiofrequency electronics enters a new era with (ultra)wide bandgap semiconductors such as GaN, SiC, and β-Ga2O3, driving significant advancements across various technologies. The elevated breakdown voltage and minimal on-resistance result in size-compact and energy-efficient devices. However, effective thermal management poses a critical challenge, particularly when pushing devices to operate at their electronic limits for maximum output power. To address these thermal hurdles, comprehensive studies into thermal conduction within semiconductor heterostructures are essential. This review offers a comprehensive overview of recent progress in (ultra)wide bandgap semiconductor heterostructures dedicated to electronics cooling and are structured into four sections. Part 1 summarizes the material growth and thermal properties of (ultra)wide bandgap semiconductor heterostructures. Part 2 discusses heterogeneous integration techniques and thermal boundary conductance (TBC) of the bonded interfaces. Part 3 focuses on the research of TBC, including the progress in thermal characterization, experimental and theoretical enhancement, and the fundamental understanding of TBC. Parts 4 shifts the focus to electronic devices, presenting research on the cooling effects of these heterostructures through simulations and experiments. Finally, this review also identifies objectives, challenges, and potential avenues for future research. It aims to drive progress in electronics cooling through novel materials development, innovative integration techniques, new device designs, and advanced thermal characterization. Addressing these challenges and fostering continued progress hold the promise of realizing high-performance, high output power, and highly reliable electronics operating at the electronic limits.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"34 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and angle-resolved optical and vibrational properties of chiral trivial insulator InSeI 手性三重绝缘体 InSeI 的结构和角度分辨光学与振动特性
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-25 DOI: 10.1063/5.0219184
Melike Erdi, Jesse Kapeghian, Patrick Hays, Medha Dandu, Daria D. Blach, Mohammed Sayyad, Jan Kopaczek, Renee Sailus, Archana Raja, Sandhya Susarla, Antia S. Botana, Seth Ariel Tongay
{"title":"Structural and angle-resolved optical and vibrational properties of chiral trivial insulator InSeI","authors":"Melike Erdi, Jesse Kapeghian, Patrick Hays, Medha Dandu, Daria D. Blach, Mohammed Sayyad, Jan Kopaczek, Renee Sailus, Archana Raja, Sandhya Susarla, Antia S. Botana, Seth Ariel Tongay","doi":"10.1063/5.0219184","DOIUrl":"https://doi.org/10.1063/5.0219184","url":null,"abstract":"Chiral materials, known for their unique structural and quantum properties, have garnered significant interest, with InSeI emerging as a promising chiral topologically trivial insulator. In this study, we introduce a scalable Bridgman crystal growth technique to synthesize large, environmentally stable single crystals of InSeI, achieving centimeter-sized chiral crystals with superior quality. Notably, this work marks the first report of photoluminescence (PL) emission from exfoliated InSeI chiral chains, alongside a detailed exploration of their polarization-dependent optical and phononic properties. Our Bridgman-grown crystals exhibit excellent structural integrity, enhanced exfoliation characteristics, and increased resistance to light-induced degradation compared to those produced by traditional solid-state methods. A microscopy analysis confirms the distinct chiral structure of InSeI, and the first in situ nanometer spatial resolution electron energy loss spectroscopy measurements establish a bandgap of 2.08 eV, consistent with the cryogenic PL emission peak. Angle-resolved Raman spectroscopy, combined with calculated vibrational properties, identifies five distinct frequency regions in the Raman modes, predominantly associated with In-, In-I, In-Se-I, and Se-atomic motions, with significant intensity variations under different polarization orientations. This study not only offers a practical method for synthesizing high-quality InSeI but also provides the first comprehensive experimental insights into its unique optical and vibrational properties, significantly advancing the understanding of chiral material systems.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"105 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in multimodal skin-like wearable sensors 多模态类肤穿戴式传感器的最新进展
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-19 DOI: 10.1063/5.0217328
Shuying Wu, Zhao Sha, Liao Wu, Hoang-Phuong Phan, Shuai He, Jianbo Tang, Jiangtao Xu, Dewei Chu, Chun H. Wang, Shuhua Peng
{"title":"Recent advances in multimodal skin-like wearable sensors","authors":"Shuying Wu, Zhao Sha, Liao Wu, Hoang-Phuong Phan, Shuai He, Jianbo Tang, Jiangtao Xu, Dewei Chu, Chun H. Wang, Shuhua Peng","doi":"10.1063/5.0217328","DOIUrl":"https://doi.org/10.1063/5.0217328","url":null,"abstract":"Wearable sensors capable of simultaneous monitoring of multiple physiological markers have the potential to dramatically reduce healthcare cost through early detection of diseases and accelerating rehabilitation processes. These skin-like sensors can deliver significant benefits thanks to their ability to continuously track various physiological indicators over extended periods. However, due to the high sensitivities of soft sensors to multiple stimuli, decoupling the effects of various physical stimuli associated with accurately pinpointing the contributions of individual physiological markers remains a huge challenge. This article aims to provide a comprehensive review of recent advances in multifunctional, skin-like wearable sensors, with a particular emphasis on the mechanisms of signal transduction, microengineering designs, and their diverse applications in both health monitoring and human–machine interactions. It elaborates on the operational principles of various wearable sensors, such as triboelectric, resistive, piezoelectric, and capacitive sensors, each uniquely adept at detecting a range of stimuli. This article also examines recent advances in conceptualizations and methodologies for isolating specific stimuli from the mix of multiple physiological signals. Furthermore, this review highlights potential applications of these multimodal skin-like wearable sensors. Finally, opportunities and challenges facing multimodal wearable sensors are also discussed, exploring their potential in wearable intelligent systems tailored for diverse applications.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"126 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MXene-TiO2 heterostructured iontronic neural devices based on ion-dynamic capacitance enabling optoelectronic modulation 基于离子动态电容实现光电调制的 MXene-TiO2 异质结构离子电子神经器件
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-19 DOI: 10.1063/5.0232001
Quanhong Chang, Wei Chen, Fudu Xing, Wanhua Li, Xun Peng, Weijie Du, Huishan Wang, Guina Xiao, Lei Huang
{"title":"MXene-TiO2 heterostructured iontronic neural devices based on ion-dynamic capacitance enabling optoelectronic modulation","authors":"Quanhong Chang, Wei Chen, Fudu Xing, Wanhua Li, Xun Peng, Weijie Du, Huishan Wang, Guina Xiao, Lei Huang","doi":"10.1063/5.0232001","DOIUrl":"https://doi.org/10.1063/5.0232001","url":null,"abstract":"The development of neuromorphic systems necessitates the use of memcapacitors that can adapt to optoelectronic modulation. Two-dimensional (2D) materials with atomically thin features and their derived heterostructures are able to allow for controlling local transfer of charge carrier but reports on 2D materials-enabled capacitive-type photoelectric synapses have not been experimentally exploited yet. Herein, MXene-TiO2 heterostructured iontronic neural devices based on ion-dynamic capacitance enabling optoelectronic modulation are designed. According to the electrochemical insight, under UV light illustration, photoexcited electrons in TiO2 flow to MXene, leading to the localized accumulation of electrons as the trapping center and thus inducing the embedding of H+ for participating in the pseudo-intercalation. On removing the UV light, a part of trapped H+ are not instantly returned to the initial state. As a result, this memcapacitor features hysteresis ion-dynamic capacitance under optoelectronic modulation. Through assessing its applicability to neuromorphic computing, this memcapacitor achieves the high recognition accuracy (93.5%) of handwritten digits by recognizing and sharpening the input signal trajectory.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"14 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信