Lemma Teshome Tufa, Birhanu Bayissa Gicha, Cheru Fekadu Molla, Huu-Quang Nguyen, Van Tan Tran, Njemuwa Nwaji, Xiaojun Hu, Hongxia Chen, Jaebeom Lee
{"title":"Plasmon-enhanced photo/electrocatalysis: Harnessing hetero-nanostructures for sustainable energy and environmental applications","authors":"Lemma Teshome Tufa, Birhanu Bayissa Gicha, Cheru Fekadu Molla, Huu-Quang Nguyen, Van Tan Tran, Njemuwa Nwaji, Xiaojun Hu, Hongxia Chen, Jaebeom Lee","doi":"10.1063/5.0205461","DOIUrl":"https://doi.org/10.1063/5.0205461","url":null,"abstract":"Plasmon-enhanced photo/electrocatalysis using hetero-nanostructures has emerged as a promising approach for boosting the efficiency and selectivity of photo/electrocatalytic reactions. Plasmonic nanostructures (PNSs), with their unique properties including localized surface plasmon resonance (LSPR), play a vital role in enhancing photo/electrocatalytic activities. By leveraging LSPR, PNSs can concentrate incident light, facilitate charge separation, and induce surface reactions, leading to improved catalytic performance. In this review, we provide a comprehensive analysis of the current state of knowledge in this field. We discuss the rational design and synthesis of hetero-nanostructures, focusing on the optimization of composition, size, shape, and interface properties. Furthermore, we explore various combinations of plasmonic sources with semiconductors of diverse morphologies to achieve enhanced photocatalytic activity. The reviewed research encompasses applications in water splitting, removal of organic pollutants, CO2 reduction, and energy conversion. We also address the challenges that need to be overcome, including optimization of materials, reproducibility, stability, band alignment, and understanding plasmon–material interactions in hetero-nanostructures. The review of future perspectives includes the integration of multiple functionalities, the exploration of novel plasmonic materials, and the translation of plasmon-enhanced photo/electrocatalysis into practical applications. The combination of plasmonics and nanotechnology can be used to advance green technologies and address pressing global issues.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"149 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul Nizet, Francesco Chiabrera, Nicolau López-Pintó, Nerea Alayo, Philipp Langner, Sergio Valencia, Arantxa Fraile Rodríguez, Federico Baiutti, Alevtina Smekhova, Alex Morata, Jordi Sort, Albert Tarancón
{"title":"Analog control of La0.5Sr0.5FeO3-δ electrical properties through oxygen deficiency induced magnetic transition","authors":"Paul Nizet, Francesco Chiabrera, Nicolau López-Pintó, Nerea Alayo, Philipp Langner, Sergio Valencia, Arantxa Fraile Rodríguez, Federico Baiutti, Alevtina Smekhova, Alex Morata, Jordi Sort, Albert Tarancón","doi":"10.1063/5.0234003","DOIUrl":"https://doi.org/10.1063/5.0234003","url":null,"abstract":"Switchability of materials properties by applying controlled stimuli such as voltage pulses is an emerging field of study with applicability in adaptive and programmable devices like neuromorphic transistors or non-emissive smart displays. One of the most exciting approaches to modulate materials performance is mobile ion/vacancy insertion for inducing changes in relevant electrical, optical, or magnetic properties, among others. Unveiling the interplay between changes in the concentration of mobile defects (like oxygen vacancies) and functional properties in relevant materials represents a step forward for underpinning the emerging oxide iontronics discipline. In this work, electrochemical oxide-ion solid-state pumping cells were fabricated for analog control of the oxygen stoichiometry in thin films of mixed ionic-electronic conductor La0.5Sr0.5FeO3-δ. We demonstrate over more than four orders of magnitude electronic conductivity control at 50 °C within the same crystallographic phase through precise and continuous voltage control of the oxygen stoichiometry. We show that behind the modification of the transport properties of the material lays a paramagnetic-to-antiferromagnetic transition. We exploit such magnetoelectric coupling to show control over the exchange interaction between La0.5Sr0.5FeO3-δ and a ferromagnetic Co layer deposited on top.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"93 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangyu Tang, Kan Wang, Baochang Li, Jiaxin Han, Chi Zhang, Bincheng Wang, C. D. Lin, Cheng Jin
{"title":"Spatial filtering and optimal generation of high-flux soft x-ray high harmonics using a Bessel–Gauss beam","authors":"Xiangyu Tang, Kan Wang, Baochang Li, Jiaxin Han, Chi Zhang, Bincheng Wang, C. D. Lin, Cheng Jin","doi":"10.1063/5.0221080","DOIUrl":"https://doi.org/10.1063/5.0221080","url":null,"abstract":"In recent years, significant advancements in high-repetition-rate, high-average-power mid-infrared laser pulses have enabled the generation of tabletop high-flux coherent soft x-ray harmonics for photon-hungry experiments. However, for practical applications, it is crucial to effectively filter out the driving beam from the high harmonics. In this study, we leverage the distinctive properties of a Bessel–Gauss (BG) beam to introduce a novel approach for spatial filtering, specifically targeting soft x-ray harmonics, releasing with a high-photon flux simultaneously. Our simulations reveal that by finely adjusting the focus geometry and gas pressure, the BG beam naturally adopts an annular shape, emitting high harmonics with minimal divergence in the far field. To achieve complete spatial separation of the driving beam and harmonic emissions, we pinpoint the optimal gas pressure and focusing geometry, particularly under overdriven laser intensities, for achieving good phase matching of harmonic emissions from short-trajectory electrons within the gas medium when the exact ionization level is higher than the “critical” value. Additionally, we establish scaling relations for sustaining optimal phase-matching conditions crucial for spatially separating the driving laser and the high-harmonic field, especially as the wavelength of the driving laser increases. Furthermore, our analysis demonstrates a substantial enhancement of harmonic yields by at least one order of magnitude compared to a truncated Gaussian annular beam. We also show that under accessible experimental conditions, soft x-ray photon flux up to 1010 photons/s at 250 eV can be achieved. The utilization of the BG beam opens up a promising pathway for the development of high-flux attosecond soft x-ray light sources, poised to serve a wide range of applications.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"13 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheng Yang, Yuelei Zhao, Xichao Zhang, Xiangjun Xing, Haifeng Du, Xiaoguang Li, Masahito Mochizuki, Xiaohong Xu, Johan Åkerman, Yan Zhou
{"title":"Fundamentals and applications of the skyrmion Hall effect","authors":"Sheng Yang, Yuelei Zhao, Xichao Zhang, Xiangjun Xing, Haifeng Du, Xiaoguang Li, Masahito Mochizuki, Xiaohong Xu, Johan Åkerman, Yan Zhou","doi":"10.1063/5.0218280","DOIUrl":"https://doi.org/10.1063/5.0218280","url":null,"abstract":"Magnetic skyrmions are promising for future spintronic devices due to their nanoscale size, high thermal stability, and mobility at low current densities. However, their practical applications may be limited by the skyrmion Hall effect (SkHE), which causes skyrmions to deflect from the direction of the driving current. The SkHE usually results in annihilation of skyrmions due to the destructive skyrmion–boundary interactions. In this review, we provide a comprehensive overview of the fundamentals of the SkHE as well as the recent advances in manipulation and suppression of the SkHE in various types of magnetic materials. Additionally, we introduce some SkHE-free topological spin textures, such as skyrmioniums and hopfions. This review covers the following aspects: origin of the SkHE and its implications on spintronics, manipulation of the SkHE by external magnetic fields and geometrical engineering, and properties of SkHE-free spin textures. The review concludes by highlighting future research directions and challenges, suggesting that magnetic skyrmions and related topological spin textures will be essential for upcoming electronic and spintronic applications.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"29 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abhishek Singh Dahiya, Ayoub Zumeit, Adamos Christou, Alex S. Loch, Balaji Purushothaman, Peter J. Skabara, Ravinder Dahiya
{"title":"Printing semiconductor-based devices and circuits for flexible electronic skin","authors":"Abhishek Singh Dahiya, Ayoub Zumeit, Adamos Christou, Alex S. Loch, Balaji Purushothaman, Peter J. Skabara, Ravinder Dahiya","doi":"10.1063/5.0217297","DOIUrl":"https://doi.org/10.1063/5.0217297","url":null,"abstract":"Electronic skin (e-skin), capable of sensing a physical or chemical stimulus and triggering a suitable response, is critical in applications such as healthcare, wearables, robotics, and more. With a substantial number and types of sensors over a large area, the low-cost fabrication is desirable for e-skin. In this regard, printing electronics attract the attention as it allow efficient use of materials, “maskless” fabrication, and low-temperature deposition. Additionally, the use of e-skin in real-time applications calls for faster computation and communication. However, due to limitations of widely used materials (e.g., low mobility) and the printing tools (e.g., poor print resolution), the use of printed electronics has been restricted to passive devices for low-end applications until recent years. Such limitations are now being addressed through high-mobility materials and highlighted in this review article, using e-skin as a vehicle. This paper discusses techniques that allow printing of high-quality electronic layers using inorganic nanostructures, and their further processing to obtain sensors, energy harvesters, and transistors. Specifically, the contact printing, transfer printing, and direct roll printing are discussed along with working mechanisms and the influence of print dynamics. For the sake of completeness, a few examples of organic semiconductor-based devices are also included. E-skin presents a good case for 3D integration of flexible electronics, and therefore, the use of high-resolution printing to connect various devices on a substrate or 3D stack is also discussed. Finally, major challenges hindering the scalability of printing methods and their commercial uptake are discussed along with potential solutions.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"12 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Defects in Ge and GeSn and their impact on optoelectronic properties","authors":"Andrea Giunto, Anna Fontcuberta i Morral","doi":"10.1063/5.0218623","DOIUrl":"https://doi.org/10.1063/5.0218623","url":null,"abstract":"GeSn has emerged as a promising semiconductor with optoelectronic functionality in the mid-infrared, with the potential of replacing expensive III–V technology for monolithic on-chip Si photonics. Multiple challenges to achieve optoelectronic-grade GeSn have been successfully solved in the last decade. We stand today on the brink of a potential revolution in which GeSn could be used in many optoelectronic applications such as light detection and ranging devices and lasers. However, the limited understanding and control of material defects represents today a bottleneck in the performance of GeSn-based devices, hindering their commercialization. Point and linear defects in GeSn have a strong impact on its electronic properties, namely, unintentional doping concentration, carrier lifetime, and mobility, which ultimately determine the performance of optoelectronic devices. In this review, after introducing the state-of-the-art of the fabrication and properties of GeSn, we provide a comprehensive overview of the current understanding of GeSn defects and their influence on the material (opto)electronic properties. Where relevant, we also review the work realized on pure Ge. Throughout the manuscript, we highlight the critical points that are still to solve. By bringing together the different fabrication techniques available and characterizations realized, we offer a wholistic view on the field of GeSn and provide elements on how it could move forward.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"14 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanlin Zhu, Xin Ye, Yuanyuan Tian, Yangwen Ge, Hui Huang, Zheng Han Lim, Ming Gao, Binbin Liu, Yan Zhao, Kun Zhou, Chao Jiang
{"title":"Bioinspired porous magnetoresponsive soft actuators with programmable 3D curved shapes","authors":"Hanlin Zhu, Xin Ye, Yuanyuan Tian, Yangwen Ge, Hui Huang, Zheng Han Lim, Ming Gao, Binbin Liu, Yan Zhao, Kun Zhou, Chao Jiang","doi":"10.1063/5.0231351","DOIUrl":"https://doi.org/10.1063/5.0231351","url":null,"abstract":"Shape-programmable magnetoresponsive soft actuators (SMSAs) are highly desirable for diverse applications in soft robotics and minimally invasive medicine. Current methods face challenges in achieving programmable magnetoresponsive three-dimensional (3D) shapes with non-uniform and continuously adjustable curvatures, which are crucial for the highly effective locomotion of SMSAs. Here, we propose an approach that integrates bioinspired pore design with mechanically guided magnetization, enabling programmable magnetoresponsive complex shapes with non-uniform and continuously adjustable curvatures. Various magnetoresponsive developable and non-developable surfaces, along with biomimetic 3D curved shapes, were prepared. The prepared SMSAs exhibit actuation rates of up to 20 s−1. Furthermore, an inchworm-inspired soft crawling robot capable of steering, navigation, obstacle crossing, and cargo transportation was developed, achieving a locomotion speed of up to 1.2 body lengths per second. This work breaks through the design possibilities for SMSAs, enhances the actuation rates of soft actuators, and advances the application of SMSAs in soft crawling robots.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"21 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feng-Jun Li, Shuai Wang, Rui Zhong, Meng-Xia Hu, Yue jiang, Meijiu Zheng, Mu Wang, Xiangping Li, Ruwen Peng, Zi-Lan Deng
{"title":"Metasurface polarization optics: From classical to quantum","authors":"Feng-Jun Li, Shuai Wang, Rui Zhong, Meng-Xia Hu, Yue jiang, Meijiu Zheng, Mu Wang, Xiangping Li, Ruwen Peng, Zi-Lan Deng","doi":"10.1063/5.0226286","DOIUrl":"https://doi.org/10.1063/5.0226286","url":null,"abstract":"Metasurface polarization optics, manipulating polarization using metasurfaces composed of subwavelength anisotropic nanostructure array, has enabled a lot of innovative integrated strategies for versatile and on-demand polarization generation, modulation, and detection. Compared with conventional bulky optical elements for polarization control, metasurface polarization optics provides a feasible platform in a subwavelength scale to build ultra-compact and multifunctional polarization devices, greatly shrinking the size of the whole polarized optical system and network. Here, we review the recent progresses of metasurface polarization optics in both classical and quantum regimes, including uniform and spatially varying polarization-manipulating devices. Basic polarization optical elements such as meta-waveplate, meta-polarizer, and resonant meta-devices with polarization singularities provide compact means to generate and modulate uniform polarization beams. Spatial-varying polarization manipulation by employing the pixelation feature of metasurfaces, leading to advanced diffraction and imaging functionalities, such as vectorial holography, classic and quantum polarization imaging, quantum polarization entanglement, quantum interference, and modulation. Substituting conventional polarization optics, metasurface approaches pave the way for on-chip classic or quantum information processing, flourishing advanced applications in displaying, communication, imaging, and computing.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"47 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenfeng Ding, Penghui Ji, Tongtong Li, Ting Guo, Zhong Xu, Taehoon Kim, Hui Zhang, Jiayu Wan, Luis K. Ono, Yabing Qi
{"title":"Photoemission spectroscopy of battery materials","authors":"Chenfeng Ding, Penghui Ji, Tongtong Li, Ting Guo, Zhong Xu, Taehoon Kim, Hui Zhang, Jiayu Wan, Luis K. Ono, Yabing Qi","doi":"10.1063/5.0235835","DOIUrl":"https://doi.org/10.1063/5.0235835","url":null,"abstract":"Recognized by the 2019 Nobel Prize in Chemistry, rechargeable lithium-ion battery (LIB) has become a world-revolutionary technology. Further developments of LIB-based and “beyond LIBs” regarding capacity, cycle life, and safety are intimately associated with the fundamental understanding of chemical compositions, structures, physical properties of electrodes and electrolytes, and other related components. The time-evolving snapshots of the dynamical processes occurring during the battery operation can help design better strategies to prevent the formation of uncontrolled interphase layers, dendrites, electrode/electrolyte decompositions, and generation of gases. Photoemission spectroscopy (PES) has become one of the important techniques for understanding the aforementioned aspects. However, many potential pitfalls and cautions need to be considered from sample preparation, during PES measurements, to data analyses. Although the primary focus of this article is not to evaluate the PES technique itself, we first introduce a minimal set of fundamental concepts to minimize misinterpretation arising from the physics of PES. Subsequently, we examine studies that utilize PES techniques to determine chemical compositions of solid- and liquid-state battery materials, energy level diagrams that bridge different terminologies between PES and electrochemistry, along with the theoretical aspects of PES evolving from first-principle calculations to machine learning. Toward the end of this review, we outline potential future research directions.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"233 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao Huang, Dan Li, Ping Qin, Qingdong Ruan, Dorsa Dehghan-baniani, Xiang Peng, Babak Mehrjou, Paul K. Chu
{"title":"Unraveling electrocatalyst reaction mechanisms in water electrolysis: In situ Raman spectra","authors":"Chao Huang, Dan Li, Ping Qin, Qingdong Ruan, Dorsa Dehghan-baniani, Xiang Peng, Babak Mehrjou, Paul K. Chu","doi":"10.1063/5.0232980","DOIUrl":"https://doi.org/10.1063/5.0232980","url":null,"abstract":"Electrocatalysis is crucial for sustainable energy solutions, focusing on energy harvesting, storage, and pollution control. Despite the development of various electrocatalysts, understanding the dynamic processes in electrochemical reactions is still limited, hindering effective catalyst design. In situ Raman spectra have emerged as a critical tool, providing molecular-level insights into surface processes under operational conditions and discussing their development, advantages, and configurations. This review emphasizes new findings at the catalyst–electrolyte interface, especially interface water molecule state, during the hydrogen evolution reaction and oxygen evolution reaction in recent years. Finally, the challenges and future directions for in situ Raman techniques in electrocatalysis are discussed, emphasizing their importance in advancing understanding and guiding novel catalyst design.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"35 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}