Boris N. Slautin, Yongtao Liu, Kamyar Barakati, Yu Liu, Reece Emery, Seungbum Hong, Astita Dubey, Vladimir V. Shvartsman, Doru C. Lupascu, Sheryl L. Sanchez, Mahshid Ahmadi, Yunseok Kim, Evgheni Strelcov, Keith A. Brown, Philip D. Rack, Sergei V. Kalinin
{"title":"组合和高通量合成和加工中的材料发现:SPM的新前沿","authors":"Boris N. Slautin, Yongtao Liu, Kamyar Barakati, Yu Liu, Reece Emery, Seungbum Hong, Astita Dubey, Vladimir V. Shvartsman, Doru C. Lupascu, Sheryl L. Sanchez, Mahshid Ahmadi, Yunseok Kim, Evgheni Strelcov, Keith A. Brown, Philip D. Rack, Sergei V. Kalinin","doi":"10.1063/5.0259851","DOIUrl":null,"url":null,"abstract":"For over three decades, scanning probe microscopy (SPM) has been a key method for exploring material structures and functionalities at nanometer and often atomic scales in ambient, liquid, and vacuum environments. Historically, SPM applications have predominantly been downstream, with images and spectra serving as a qualitative source of data on the microstructure and properties of materials, and in rare cases of fundamental physical knowledge. However, the fast-growing developments in accelerated material synthesis via self-driving labs and established applications such as combinatorial spread libraries are poised to change this paradigm. Rapid synthesis demands matching capabilities to probe the structure and functionalities of materials on small scales and with high throughput. SPM inherently meets these criteria, offering a rich and diverse array of data from a single measurement. Here, we overview SPM methods applicable to these emerging applications and emphasize their quantitativeness, focusing on piezoresponse force microscopy, electrochemical strain microscopy, conductive, and surface photovoltage measurements. We discuss the challenges and opportunities ahead, asserting that SPM will play a crucial role in closing the loop from material prediction and synthesis to characterization.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"4 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Materials discovery in combinatorial and high-throughput synthesis and processing: A new Frontier for SPM\",\"authors\":\"Boris N. Slautin, Yongtao Liu, Kamyar Barakati, Yu Liu, Reece Emery, Seungbum Hong, Astita Dubey, Vladimir V. Shvartsman, Doru C. Lupascu, Sheryl L. Sanchez, Mahshid Ahmadi, Yunseok Kim, Evgheni Strelcov, Keith A. Brown, Philip D. Rack, Sergei V. Kalinin\",\"doi\":\"10.1063/5.0259851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For over three decades, scanning probe microscopy (SPM) has been a key method for exploring material structures and functionalities at nanometer and often atomic scales in ambient, liquid, and vacuum environments. Historically, SPM applications have predominantly been downstream, with images and spectra serving as a qualitative source of data on the microstructure and properties of materials, and in rare cases of fundamental physical knowledge. However, the fast-growing developments in accelerated material synthesis via self-driving labs and established applications such as combinatorial spread libraries are poised to change this paradigm. Rapid synthesis demands matching capabilities to probe the structure and functionalities of materials on small scales and with high throughput. SPM inherently meets these criteria, offering a rich and diverse array of data from a single measurement. Here, we overview SPM methods applicable to these emerging applications and emphasize their quantitativeness, focusing on piezoresponse force microscopy, electrochemical strain microscopy, conductive, and surface photovoltage measurements. We discuss the challenges and opportunities ahead, asserting that SPM will play a crucial role in closing the loop from material prediction and synthesis to characterization.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0259851\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0259851","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Materials discovery in combinatorial and high-throughput synthesis and processing: A new Frontier for SPM
For over three decades, scanning probe microscopy (SPM) has been a key method for exploring material structures and functionalities at nanometer and often atomic scales in ambient, liquid, and vacuum environments. Historically, SPM applications have predominantly been downstream, with images and spectra serving as a qualitative source of data on the microstructure and properties of materials, and in rare cases of fundamental physical knowledge. However, the fast-growing developments in accelerated material synthesis via self-driving labs and established applications such as combinatorial spread libraries are poised to change this paradigm. Rapid synthesis demands matching capabilities to probe the structure and functionalities of materials on small scales and with high throughput. SPM inherently meets these criteria, offering a rich and diverse array of data from a single measurement. Here, we overview SPM methods applicable to these emerging applications and emphasize their quantitativeness, focusing on piezoresponse force microscopy, electrochemical strain microscopy, conductive, and surface photovoltage measurements. We discuss the challenges and opportunities ahead, asserting that SPM will play a crucial role in closing the loop from material prediction and synthesis to characterization.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.