Annual review of neuroscience最新文献

筛选
英文 中文
Subcortical Cognition: The Fruit Below the Rind. 皮层下认知:Rind下的果实。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2022-04-06 DOI: 10.1146/annurev-neuro-110920-013544
K. Janacsek, Tanya M. Evans, Mariann M. Kiss, Leela Shah, H. Blumenfeld, M. Ullman
{"title":"Subcortical Cognition: The Fruit Below the Rind.","authors":"K. Janacsek, Tanya M. Evans, Mariann M. Kiss, Leela Shah, H. Blumenfeld, M. Ullman","doi":"10.1146/annurev-neuro-110920-013544","DOIUrl":"https://doi.org/10.1146/annurev-neuro-110920-013544","url":null,"abstract":"Cognitive neuroscience has highlighted the cerebral cortex while often overlooking subcortical structures. This cortical proclivity is found in basic and translational research on many aspects of cognition, especially higher cognitive domains such as language, reading, music, and math. We suggest that, for both anatomical and evolutionary reasons, multiple subcortical structures play substantial roles across higher and lower cognition. We present a comprehensive review of existing evidence, which indeed reveals extensive subcortical contributions in multiple cognitive domains. We argue that the findings are overall both real and important. Next, we advance a theoretical framework to capture the nature of (sub)cortical contributions to cognition. Finally, we propose how new subcortical cognitive roles can be identified by leveraging anatomical and evolutionary principles, and we describe specific methods that can be used to reveal subcortical cognition. Altogether, this review aims to advance cognitive neuroscience by highlighting subcortical cognition and facilitating its future investigation. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":13.9,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43715681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Neuromodulation and Neurophysiology on the Timescale of Learning and Decision-Making. 学习和决策时间尺度上的神经调节和神经生理学。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2022-04-01 DOI: 10.1146/annurev-neuro-092021-125059
Cooper D. Grossman, Jeremiah Y. Cohen
{"title":"Neuromodulation and Neurophysiology on the Timescale of Learning and Decision-Making.","authors":"Cooper D. Grossman, Jeremiah Y. Cohen","doi":"10.1146/annurev-neuro-092021-125059","DOIUrl":"https://doi.org/10.1146/annurev-neuro-092021-125059","url":null,"abstract":"Nervous systems evolved to effectively navigate the dynamics of the environment to achieve their goals. One framework used to study this fundamental problem arose in the study of learning and decision-making. In this framework, the demands of effective behavior require slow dynamics-on the scale of seconds to minutes-of networks of neurons. Here, we review the phenomena and mechanisms involved. Using vignettes from a few species and areas of the nervous system, we view neuromodulators as key substrates for temporal scaling of neuronal dynamics. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":13.9,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48220260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Neuroimmune Interactions in Peripheral Organs. 外周器官的神经免疫相互作用。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2022-04-01 DOI: 10.1146/annurev-neuro-111020-105359
Roel G J Klein Wolterink, Glendon S. Wu, I. Chiu, H. Veiga-Fernandes
{"title":"Neuroimmune Interactions in Peripheral Organs.","authors":"Roel G J Klein Wolterink, Glendon S. Wu, I. Chiu, H. Veiga-Fernandes","doi":"10.1146/annurev-neuro-111020-105359","DOIUrl":"https://doi.org/10.1146/annurev-neuro-111020-105359","url":null,"abstract":"Interactions between the nervous and immune systems were recognized long ago, but recent studies show that this crosstalk occurs more frequently than was previously appreciated. Moreover, technological advances have enabled the identification of the molecular mediators and receptors that enable the interaction between these two complex systems and provide new insights on the role of neuroimmune crosstalk in organismal physiology. Most neuroimmune interaction occurs at discrete anatomical locations in which neurons and immune cells colocalize. Here, we describe the interactions of the different branches of the peripheral nervous system with immune cells in various organs, including the skin, intestine, lung, and adipose tissue. We highlight how neuroimmune crosstalk orchestrates physiological processes such as host defense, tissue repair, metabolism, and thermogenesis. Unraveling these intricate relationships is invaluable to explore the therapeutic potential of neuroimmune interaction. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":13.9,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45858570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience. 融合合成分子和基因编码蛋白质,打造神经科学新工具。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2022-02-28 DOI: 10.1146/annurev-neuro-110520-030031
Pratik Kumar, L. Lavis
{"title":"Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.","authors":"Pratik Kumar, L. Lavis","doi":"10.1146/annurev-neuro-110520-030031","DOIUrl":"https://doi.org/10.1146/annurev-neuro-110520-030031","url":null,"abstract":"Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":13.9,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45689722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
How Cortical Circuits Implement Cortical Computations: Mouse Visual Cortex as a Model. 皮层电路如何实现皮层计算?以小鼠视觉皮层为模型
IF 12.1 1区 医学
Annual review of neuroscience Pub Date : 2021-07-08 Epub Date: 2021-04-29 DOI: 10.1146/annurev-neuro-102320-085825
Cristopher M Niell, Massimo Scanziani
{"title":"How Cortical Circuits Implement Cortical Computations: Mouse Visual Cortex as a Model.","authors":"Cristopher M Niell, Massimo Scanziani","doi":"10.1146/annurev-neuro-102320-085825","DOIUrl":"10.1146/annurev-neuro-102320-085825","url":null,"abstract":"<p><p>The mouse, as a model organism to study the brain, gives us unprecedented experimental access to the mammalian cerebral cortex. By determining the cortex's cellular composition, revealing the interaction between its different components, and systematically perturbing these components, we are obtaining mechanistic insight into some of the most basic properties of cortical function. In this review, we describe recent advances in our understanding of how circuits of cortical neurons implement computations, as revealed by the study of mouse primary visual cortex. Further, we discuss how studying the mouse has broadened our understanding of the range of computations performed by visual cortex. Finally, we address how future approaches will fulfill the promise of the mouse in elucidating fundamental operations of cortex.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"44 ","pages":"517-546"},"PeriodicalIF":12.1,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925090/pdf/nihms-1849805.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10711078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ensheathment and Myelination of Axons: Evolution of Glial Functions. 轴突的鞘鞘和髓鞘形成:神经胶质功能的进化。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2021-07-08 Epub Date: 2021-03-15 DOI: 10.1146/annurev-neuro-100120-122621
Klaus-Armin Nave, Hauke B Werner
{"title":"Ensheathment and Myelination of Axons: Evolution of Glial Functions.","authors":"Klaus-Armin Nave,&nbsp;Hauke B Werner","doi":"10.1146/annurev-neuro-100120-122621","DOIUrl":"https://doi.org/10.1146/annurev-neuro-100120-122621","url":null,"abstract":"<p><p>Myelination of axons provides the structural basis for rapid saltatory impulse propagation along vertebrate fiber tracts, a well-established neurophysiological concept. However, myelinating oligodendrocytes and Schwann cells serve additional functions in neuronal energy metabolism that are remarkably similar to those of axon-ensheathing glial cells in unmyelinated invertebrates. Here we discuss myelin evolution and physiological glial functions, beginning with the role of ensheathing glia in preventing ephaptic coupling, axoglial metabolic support, and eliminating oxidative radicals. In both vertebrates and invertebrates, axoglial interactions are bidirectional, serving to regulate cell fate, nerve conduction, and behavioral performance. One key step in the evolution of compact myelin in the vertebrate lineage was the emergence of the open reading frame for myelin basic protein within another gene. Several other proteins were neofunctionalized as myelin constituents and help maintain a healthy nervous system. Myelination in vertebrates became a major prerequisite of inhabiting new ecological niches.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":"197-219"},"PeriodicalIF":13.9,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25480603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
Neocortical Layer 1: An Elegant Solution to Top-Down and Bottom-Up Integration. 新皮质层1:自上而下和自下而上集成的优雅解决方案。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2021-07-08 Epub Date: 2021-03-17 DOI: 10.1146/annurev-neuro-100520-012117
Benjamin Schuman, Shlomo Dellal, Alvar Prönneke, Robert Machold, Bernardo Rudy
{"title":"Neocortical Layer 1: An Elegant Solution to Top-Down and Bottom-Up Integration.","authors":"Benjamin Schuman,&nbsp;Shlomo Dellal,&nbsp;Alvar Prönneke,&nbsp;Robert Machold,&nbsp;Bernardo Rudy","doi":"10.1146/annurev-neuro-100520-012117","DOIUrl":"https://doi.org/10.1146/annurev-neuro-100520-012117","url":null,"abstract":"<p><p>Many of our daily activities, such as riding a bike to work or reading a book in a noisy cafe, and highly skilled activities, such as a professional playing a tennis match or a violin concerto, depend upon the ability of the brain to quickly make moment-to-moment adjustments to our behavior in response to the results of our actions. Particularly, they depend upon the ability of the neocortex to integrate the information provided by the sensory organs (bottom-up information) with internally generated signals such as expectations or attentional signals (top-down information). This integration occurs in pyramidal cells (PCs) and their long apical dendrite, which branches extensively into a dendritic tuft in layer 1 (L1). The outermost layer of the neocortex, L1 is highly conserved across cortical areas and species. Importantly, L1 is the predominant input layer for top-down information, relayed by a rich, dense mesh of long-range projections that provide signals to the tuft branches of the PCs. Here, we discuss recent progress in our understanding of the composition of L1 and review evidence that L1 processing contributes to functions such as sensory perception, cross-modal integration, controlling states of consciousness, attention, and learning.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":"221-252"},"PeriodicalIF":13.9,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012327/pdf/nihms-1705564.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25487120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 50
Ion Channel Degeneracy, Variability, and Covariation in Neuron and Circuit Resilience. 神经元和回路弹性中的离子通道简并、变异性和共变。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2021-07-08 Epub Date: 2021-03-26 DOI: 10.1146/annurev-neuro-092920-121538
Jean-Marc Goaillard, Eve Marder
{"title":"Ion Channel Degeneracy, Variability, and Covariation in Neuron and Circuit Resilience.","authors":"Jean-Marc Goaillard,&nbsp;Eve Marder","doi":"10.1146/annurev-neuro-092920-121538","DOIUrl":"https://doi.org/10.1146/annurev-neuro-092920-121538","url":null,"abstract":"<p><p>The large number of ion channels found in all nervous systems poses fundamental questions concerning how the characteristic intrinsic properties of single neurons are determined by the specific subsets of channels they express. All neurons display many different ion channels with overlapping voltage- and time-dependent properties. We speculate that these overlapping properties promote resilience in neuronal function. Individual neurons of the same cell type show variability in ion channel conductance densities even though they can generate reliable and similar behavior. This complicates a simple assignment of function to any conductance and is associated with variable responses of neurons of the same cell type to perturbations, deletions, and pharmacological manipulation. Ion channel genes often show strong positively correlated expression, which may result from the molecular and developmental rules that determine which ion channels are expressed in a given cell type.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":"335-357"},"PeriodicalIF":13.9,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25519678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 75
Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI. 通过脑电-功能磁共振同时融合推断宏观脑动力学。
IF 12.1 1区 医学
Annual review of neuroscience Pub Date : 2021-07-08 Epub Date: 2021-03-24 DOI: 10.1146/annurev-neuro-100220-093239
Marios G Philiastides, Tao Tu, Paul Sajda
{"title":"Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI.","authors":"Marios G Philiastides, Tao Tu, Paul Sajda","doi":"10.1146/annurev-neuro-100220-093239","DOIUrl":"10.1146/annurev-neuro-100220-093239","url":null,"abstract":"<p><p>Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":"315-334"},"PeriodicalIF":12.1,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25512459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurophysiology of Human Perceptual Decision-Making. 人类感知决策的神经生理学。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2021-07-08 Epub Date: 2021-05-04 DOI: 10.1146/annurev-neuro-092019-100200
Redmond G O'Connell, Simon P Kelly
{"title":"Neurophysiology of Human Perceptual Decision-Making.","authors":"Redmond G O'Connell,&nbsp;Simon P Kelly","doi":"10.1146/annurev-neuro-092019-100200","DOIUrl":"https://doi.org/10.1146/annurev-neuro-092019-100200","url":null,"abstract":"<p><p>The discovery of neural signals that reflect the dynamics of perceptual decision formation has had a considerable impact. Not only do such signals enable detailed investigations of the neural implementation of the decision-making process but they also can expose key elements of the brain's decision algorithms. For a long time, such signals were only accessible through direct animal brain recordings, and progress in human neuroscience was hampered by the limitations of noninvasive recording techniques. However, recent methodological advances are increasingly enabling the study of human brain signals that finely trace the dynamics of the unfolding decision process. In this review, we highlight how human neurophysiological data are now being leveraged to furnish new insights into the multiple processing levels involved in forming decisions, to inform the construction and evaluation of mathematical models that can explain intra- and interindividual differences, and to examine how key ancillary processes interact with core decision circuits.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":"495-516"},"PeriodicalIF":13.9,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38947491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信