Annual review of neuroscience最新文献

筛选
英文 中文
Multiscale Patterning from Competing Interactions and Length Scales. 来自竞争相互作用和长度尺度的多尺度模式。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2020-04-17 DOI: 10.1146/annurev-matsci-081519-050045
Alan Bishop
{"title":"Multiscale Patterning from Competing Interactions and Length Scales.","authors":"Alan Bishop","doi":"10.1146/annurev-matsci-081519-050045","DOIUrl":"https://doi.org/10.1146/annurev-matsci-081519-050045","url":null,"abstract":"We live in a research era marked by impressive new tools powering the scientific method to accelerate the discovery, prediction, and control of increasingly complex systems. In common with many disciplines and societal challenges and opportunities, materials and condensed matter sciences are beneficiaries. The volume and fidelity of experimental, computational, and visualization data available, and tools to rapidly interpret them, are remarkable. Conceptual frameworks, including multiscale, multiphysics modeling of this complexity, are fueled by the data and, in turn, guide directions for future experimental and computational strategies. In this spirit, I discuss the importance of competing interactions, length scales, and constraints as pervasive sources of spatiotemporal complexity. I use representative examples drawn from materials and condensed matter, including the important role of elasticity in some technologically important quantum materials. Expected final online publication date for the Annual Review of Materials Research, Volume 50 is July 1, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"1 1","pages":""},"PeriodicalIF":13.9,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-matsci-081519-050045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42432754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Neuron-Glia Signaling in Synapse Elimination. 突触消除中的神经元-胶质信号传导。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2019-07-08 DOI: 10.1146/annurev-neuro-070918-050306
Daniel K Wilton, Lasse Dissing-Olesen, Beth Stevens
{"title":"Neuron-Glia Signaling in Synapse Elimination.","authors":"Daniel K Wilton,&nbsp;Lasse Dissing-Olesen,&nbsp;Beth Stevens","doi":"10.1146/annurev-neuro-070918-050306","DOIUrl":"https://doi.org/10.1146/annurev-neuro-070918-050306","url":null,"abstract":"<p><p>Maturation of neuronal circuits requires selective elimination of synaptic connections. Although neuron-intrinsic mechanisms are important in this process, it is increasingly recognized that glial cells also play a critical role. Without proper functioning of these cells, the number, morphology, and function of synaptic contacts are profoundly altered, resulting in abnormal connectivity and behavioral abnormalities. In addition to their role in synaptic refinement, glial cells have also been implicated in pathological synapse loss and dysfunction following injury or nervous system degeneration in adults. Although mechanisms regulating glia-mediated synaptic elimination are still being uncovered, it is clear this complex process involves many cues that promote and inhibit the removal of specific synaptic connections. Gaining a greater understanding of these signals and the contribution of different cell types will not only provide insight into this critical biological event but also be instrumental in advancing knowledge of brain development and neural disease.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"42 ","pages":"107-127"},"PeriodicalIF":13.9,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-neuro-070918-050306","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37407603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 192
Brainstem Circuits Controlling Action Diversification. 控制动作多样化的脑干回路。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2019-07-08 DOI: 10.1146/annurev-neuro-070918-050201
Ludwig Ruder, Silvia Arber
{"title":"Brainstem Circuits Controlling Action Diversification.","authors":"Ludwig Ruder,&nbsp;Silvia Arber","doi":"10.1146/annurev-neuro-070918-050201","DOIUrl":"https://doi.org/10.1146/annurev-neuro-070918-050201","url":null,"abstract":"<p><p>Neuronal circuits that regulate movement are distributed throughout the nervous system. The brainstem is an important interface between upper motor centers involved in action planning and circuits in the spinal cord ultimately leading to execution of body movements. Here we focus on recent work using genetic and viral entry points to reveal the identity of functionally dedicated and frequently spatially intermingled brainstem populations essential for action diversification, a general principle conserved throughout evolution. Brainstem circuits with distinct organization and function control skilled forelimb behavior, orofacial movements, and locomotion. They convey regulatory parameters to motor output structures and collaborate in the construction of complex natural motor behaviors. Functionally tuned brainstem neurons for different actions serve as important integrators of synaptic inputs from upstream centers, including the basal ganglia and cortex, to regulate and modulate behavioral function in different contexts.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"42 ","pages":"485-504"},"PeriodicalIF":13.9,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-neuro-070918-050201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37407600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 41
The Emerging Nature of Astrocyte Diversity. 星形胶质细胞多样性的新兴性质。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2019-07-08 DOI: 10.1146/annurev-neuro-070918-050443
Baljit S Khakh, Benjamin Deneen
{"title":"The Emerging Nature of Astrocyte Diversity.","authors":"Baljit S Khakh,&nbsp;Benjamin Deneen","doi":"10.1146/annurev-neuro-070918-050443","DOIUrl":"https://doi.org/10.1146/annurev-neuro-070918-050443","url":null,"abstract":"<p><p>Astrocytes are morphologically complex, ubiquitous cells that are viewed as a homogeneous population tiling the entire central nervous system (CNS). However, this view has been challenged in the last few years with the availability of RNA sequencing, immunohistochemistry, electron microscopy, morphological reconstruction, and imaging data. These studies suggest that astrocytes represent a diverse population of cells and that they display brain area- and disease-specific properties and functions. In this review, we summarize these observations, emphasize areas where clear conclusions can be made, and discuss potential unifying themes. We also identify knowledge gaps that need to be addressed in order to exploit astrocyte diversity as a biological phenomenon of physiological relevance in the CNS. We thus provide a summary and a perspective on astrocyte diversity in the vertebrate CNS.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"42 ","pages":"187-207"},"PeriodicalIF":13.9,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-neuro-070918-050443","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37407602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 276
What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation. 什么,如果和何时运动:基底神经节回路和自定节奏动作启动。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2019-07-08 Epub Date: 2019-04-24 DOI: 10.1146/annurev-neuro-072116-031033
Andreas Klaus, Joaquim Alves da Silva, Rui M Costa
{"title":"What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation.","authors":"Andreas Klaus,&nbsp;Joaquim Alves da Silva,&nbsp;Rui M Costa","doi":"10.1146/annurev-neuro-072116-031033","DOIUrl":"https://doi.org/10.1146/annurev-neuro-072116-031033","url":null,"abstract":"<p><p>Deciding what to do and when to move is vital to our survival. Clinical and fundamental studies have identified basal ganglia circuits as critical for this process. The main input nucleus of the basal ganglia, the striatum, receives inputs from frontal, sensory, and motor cortices and interconnected thalamic areas that provide information about potential goals, context, and actions and directly or indirectly modulates basal ganglia outputs. The striatum also receives dopaminergic inputs that can signal reward prediction errors and also behavioral transitions and movement initiation. Here we review studies and models of how direct and indirect pathways can modulate basal ganglia outputs to facilitate movement initiation, and we discuss the role of cortical and dopaminergic inputs to the striatum in determining what to do and if and when to do it. Complex but exciting scenarios emerge that shed new light on how basal ganglia circuits modulate self-paced movement initiation.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"42 ","pages":"459-483"},"PeriodicalIF":13.9,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-neuro-072116-031033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37180823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 157
Early Binaural Hearing: The Comparison of Temporal Differences at the Two Ears. 早期双耳听力:双耳时间差异的比较。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2019-07-08 Epub Date: 2019-04-24 DOI: 10.1146/annurev-neuro-080317-061925
Philip X Joris, Marcel van der Heijden
{"title":"Early Binaural Hearing: The Comparison of Temporal Differences at the Two Ears.","authors":"Philip X Joris,&nbsp;Marcel van der Heijden","doi":"10.1146/annurev-neuro-080317-061925","DOIUrl":"https://doi.org/10.1146/annurev-neuro-080317-061925","url":null,"abstract":"<p><p>Many mammals, including humans, are exquisitely sensitive to tiny time differences between sounds at the two ears. These interaural time differences are an important source of information for sound detection, for sound localization in space, and for environmental awareness. Two brainstem circuits are involved in the initial temporal comparisons between the ears, centered on the medial and lateral superior olive. Cells in these nuclei, as well as their afferents, display a large number of striking physiological and anatomical specializations to enable submillisecond sensitivity. As such, they provide an important model system to study temporal processing in the central nervous system. We review the progress that has been made in characterizing these primary binaural circuits as well as the variety of mechanisms that have been proposed to underlie their function.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"42 ","pages":"433-457"},"PeriodicalIF":13.9,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-neuro-080317-061925","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37180824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Peeling the Onion of Brain Representations. 剥开大脑表征的洋葱。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2019-07-08 DOI: 10.1146/annurev-neuro-080317-061906
Nikolaus Kriegeskorte, Jörn Diedrichsen
{"title":"Peeling the Onion of Brain Representations.","authors":"Nikolaus Kriegeskorte,&nbsp;Jörn Diedrichsen","doi":"10.1146/annurev-neuro-080317-061906","DOIUrl":"https://doi.org/10.1146/annurev-neuro-080317-061906","url":null,"abstract":"<p><p>The brain's function is to enable adaptive behavior in the world. To this end, the brain processes information about the world. The concept of representation links the information processed by the brain back to the world and enables us to understand what the brain does at a functional level. The appeal of making the connection between brain activity and what it represents has been irresistible to neuroscience, despite the fact that representational interpretations pose several challenges: We must define which aspects of brain activity matter, how the code works, and how it supports computations that contribute to adaptive behavior. It has been suggested that we might drop representational language altogether and seek to understand the brain, more simply, as a dynamical system. In this review, we argue that the concept of representation provides a useful link between dynamics and computational function and ask which aspects of brain activity should be analyzed to achieve a representational understanding. We peel the onion of brain representations in search of the layers (the aspects of brain activity) that matter to computation. The article provides an introduction to the motivation and mathematics of representational models, a critical discussion of their assumptions and limitations, and a preview of future directions in this area.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"42 ","pages":"407-432"},"PeriodicalIF":13.9,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-neuro-080317-061906","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37407598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 84
Neuronal Development of Hearing and Language: Cochlear Implants and Critical Periods. 听力和语言的神经元发育:人工耳蜗和关键期。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2019-07-08 Epub Date: 2019-01-30 DOI: 10.1146/annurev-neuro-080317-061513
Andrej Kral, Michael F Dorman, Blake S Wilson
{"title":"Neuronal Development of Hearing and Language: Cochlear Implants and Critical Periods.","authors":"Andrej Kral,&nbsp;Michael F Dorman,&nbsp;Blake S Wilson","doi":"10.1146/annurev-neuro-080317-061513","DOIUrl":"https://doi.org/10.1146/annurev-neuro-080317-061513","url":null,"abstract":"<p><p>The modern cochlear implant (CI) is the most successful neural prosthesis developed to date. CIs provide hearing to the profoundly hearing impaired and allow the acquisition of spoken language in children born deaf. Results from studies enabled by the CI have provided new insights into (<i>a</i>) minimal representations at the periphery for speech reception, (<i>b</i>) brain mechanisms for decoding speech presented in quiet and in acoustically adverse conditions, (<i>c</i>) the developmental neuroscience of language and hearing, and (<i>d</i>) the mechanisms and time courses of intramodal and cross-modal plasticity. Additionally, the results have underscored the interconnectedness of brain functions and the importance of top-down processes in perception and learning. The findings are described in this review with emphasis on the developing brain and the acquisition of hearing and spoken language.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"42 ","pages":"47-65"},"PeriodicalIF":13.9,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-neuro-080317-061513","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36912309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 93
Probing Computation in the Primate Visual System at Single-Cone Resolution. 灵长类视觉系统在单锥分辨率下的探测计算。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2019-07-08 Epub Date: 2019-03-11 DOI: 10.1146/annurev-neuro-070918-050233
A Kling, G D Field, D H Brainard, E J Chichilnisky
{"title":"Probing Computation in the Primate Visual System at Single-Cone Resolution.","authors":"A Kling,&nbsp;G D Field,&nbsp;D H Brainard,&nbsp;E J Chichilnisky","doi":"10.1146/annurev-neuro-070918-050233","DOIUrl":"https://doi.org/10.1146/annurev-neuro-070918-050233","url":null,"abstract":"<p><p>Daylight vision begins when light activates cone photoreceptors in the retina, creating spatial patterns of neural activity. These cone signals are then combined and processed in downstream neural circuits, ultimately producing visual perception. Recent technical advances have made it possible to deliver visual stimuli to the retina that probe this processing by the visual system at its elementary resolution of individual cones. Physiological recordings from nonhuman primate retinas reveal the spatial organization of cone signals in retinal ganglion cells, including how signals from cones of different types are combined to support both spatial and color vision. Psychophysical experiments with human subjects characterize the visual sensations evoked by stimulating a single cone, including the perception of color. Future combined physiological and psychophysical experiments focusing on probing the elementary visual inputs are likely to clarify how neural processing generates our perception of the visual world.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"42 ","pages":"169-186"},"PeriodicalIF":13.9,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-neuro-070918-050233","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37043213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Pathophysiology and Mechanisms of Zika Virus Infection in the Nervous System. 寨卡病毒感染神经系统的病理生理学和机制。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2019-07-08 DOI: 10.1146/annurev-neuro-080317-062231
Kimberly M Christian, Hongjun Song, Guo-Li Ming
{"title":"Pathophysiology and Mechanisms of Zika Virus Infection in the Nervous System.","authors":"Kimberly M Christian, Hongjun Song, Guo-Li Ming","doi":"10.1146/annurev-neuro-080317-062231","DOIUrl":"10.1146/annurev-neuro-080317-062231","url":null,"abstract":"<p><p>In 2015, public awareness of Zika virus (ZIKV) rose in response to alarming statistics of infants with microcephaly being born to women who were infected with the virus during pregnancy, triggering global concern over these potentially devastating consequences. Although we have discovered a great deal about the genome and pathogenesis of this reemergent flavivirus since this recent outbreak, we still have much more to learn, including the nature of the virus-host interactions and mechanisms that determine its tropism and pathogenicity in the nervous system, which are in turn shaped by the continual evolution of the virus. Inevitably, we will find out more about the potential long-term effects of ZIKV exposure on the nervous system from ongoing longitudinal studies. Integrating clinical and epidemiological data with a wider range of animal and human cell culture models will be critical to understanding the pathogenetic mechanisms and developing more specific antiviral compounds and vaccines.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"42 ","pages":"249-269"},"PeriodicalIF":13.9,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523638/pdf/nihms-1553016.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37407605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信