Annual review of neuroscience最新文献

筛选
英文 中文
Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. 特定回路的深部脑刺激为运动控制提供洞察力
IF 12.1 1区 医学
Annual review of neuroscience Pub Date : 2024-08-01 Epub Date: 2024-07-01 DOI: 10.1146/annurev-neuro-092823-104810
Aryn H Gittis, Roy V Sillitoe
{"title":"Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control.","authors":"Aryn H Gittis, Roy V Sillitoe","doi":"10.1146/annurev-neuro-092823-104810","DOIUrl":"10.1146/annurev-neuro-092823-104810","url":null,"abstract":"<p><p>Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":null,"pages":null},"PeriodicalIF":12.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. 听觉分子乐团的和谐:从耳朵到大脑的发育机制
IF 12.1 1区 医学
Annual review of neuroscience Pub Date : 2024-08-01 Epub Date: 2024-07-01 DOI: 10.1146/annurev-neuro-081423-093942
Sonja J Pyott, Gabriela Pavlinkova, Ebenezer N Yamoah, Bernd Fritzsch
{"title":"Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain.","authors":"Sonja J Pyott, Gabriela Pavlinkova, Ebenezer N Yamoah, Bernd Fritzsch","doi":"10.1146/annurev-neuro-081423-093942","DOIUrl":"10.1146/annurev-neuro-081423-093942","url":null,"abstract":"<p><p>Auditory processing in mammals begins in the peripheral inner ear and extends to the auditory cortex. Sound is transduced from mechanical stimuli into electrochemical signals of hair cells, which relay auditory information via the primary auditory neurons to cochlear nuclei. Information is subsequently processed in the superior olivary complex, lateral lemniscus, and inferior colliculus and projects to the auditory cortex via the medial geniculate body in the thalamus. Recent advances have provided valuable insights into the development and functioning of auditory structures, complementing our understanding of the physiological mechanisms underlying auditory processing. This comprehensive review explores the genetic mechanisms required for auditory system development from the peripheral cochlea to the auditory cortex. We highlight transcription factors and other genes with key recurring and interacting roles in guiding auditory system development and organization. Understanding these gene regulatory networks holds promise for developing novel therapeutic strategies for hearing disorders, benefiting millions globally.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":null,"pages":null},"PeriodicalIF":12.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Control of Naturalistic Behavior Choices. 自然行为选择的神经控制
IF 12.1 1区 医学
Annual review of neuroscience Pub Date : 2024-08-01 Epub Date: 2024-07-01 DOI: 10.1146/annurev-neuro-111020-094019
Samuel K Asinof, Gwyneth M Card
{"title":"Neural Control of Naturalistic Behavior Choices.","authors":"Samuel K Asinof, Gwyneth M Card","doi":"10.1146/annurev-neuro-111020-094019","DOIUrl":"10.1146/annurev-neuro-111020-094019","url":null,"abstract":"<p><p>In the natural world, animals make decisions on an ongoing basis, continuously selecting which action to undertake next. In the lab, however, the neural bases of decision processes have mostly been studied using artificial trial structures. New experimental tools based on the genetic toolkit of model organisms now make it experimentally feasible to monitor and manipulate neural activity in small subsets of neurons during naturalistic behaviors. We thus propose a new approach to investigating decision processes, termed reverse neuroethology. In this approach, experimenters select animal models based on experimental accessibility and then utilize cutting-edge tools such as connectomes and genetically encoded reagents to analyze the flow of information through an animal's nervous system during naturalistic choice behaviors. We describe how the reverse neuroethology strategy has been applied to understand the neural underpinnings of innate, rapid decision making, with a focus on defensive behavioral choices in the vinegar fly <i>Drosophila melanogaster</i>.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":null,"pages":null},"PeriodicalIF":12.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140896891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cortical Layer-Dependent Signaling in Cognition: Three Computational Modes of the Canonical Circuit. 认知中依赖皮层的信号传递:典型回路的三种计算模式。
IF 12.1 1区 医学
Annual review of neuroscience Pub Date : 2024-08-01 DOI: 10.1146/annurev-neuro-081623-091311
Yasushi Miyashita
{"title":"Cortical Layer-Dependent Signaling in Cognition: Three Computational Modes of the Canonical Circuit.","authors":"Yasushi Miyashita","doi":"10.1146/annurev-neuro-081623-091311","DOIUrl":"10.1146/annurev-neuro-081623-091311","url":null,"abstract":"<p><p>The cerebral cortex performs computations via numerous six-layer modules. The operational dynamics of these modules were studied primarily in early sensory cortices using bottom-up computation for response selectivity as a model, which has been recently revolutionized by genetic approaches in mice. However, cognitive processes such as recall and imagery require top-down generative computation. The question of whether the layered module operates similarly in top-down generative processing as in bottom-up sensory processing has become testable by advances in the layer identification of recorded neurons in behaving monkeys. This review examines recent advances in laminar signaling in these two computations, using predictive coding computation as a common reference, and shows that each of these computations recruits distinct laminar circuits, particularly in layer 5, depending on the cognitive demands. These findings highlight many open questions, including how different interareal feedback pathways, originating from and terminating at different layers, convey distinct functional signals.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":null,"pages":null},"PeriodicalIF":12.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive Processing: A Circuit Approach to Psychosis. 预测处理:治疗精神病的电路方法。
IF 12.1 1区 医学
Annual review of neuroscience Pub Date : 2024-08-01 Epub Date: 2024-07-01 DOI: 10.1146/annurev-neuro-100223-121214
Georg B Keller, Philipp Sterzer
{"title":"Predictive Processing: A Circuit Approach to Psychosis.","authors":"Georg B Keller, Philipp Sterzer","doi":"10.1146/annurev-neuro-100223-121214","DOIUrl":"10.1146/annurev-neuro-100223-121214","url":null,"abstract":"<p><p>Predictive processing is a computational framework that aims to explain how the brain processes sensory information by making predictions about the environment and minimizing prediction errors. It can also be used to explain some of the key symptoms of psychotic disorders such as schizophrenia. In recent years, substantial advances have been made in our understanding of the neuronal circuitry that underlies predictive processing in cortex. In this review, we summarize these findings and how they might relate to psychosis and to observed cell type-specific effects of antipsychotic drugs. We argue that quantifying the effects of antipsychotic drugs on specific neuronal circuit elements is a promising approach to understanding not only the mechanism of action of antipsychotic drugs but also psychosis. Finally, we outline some of the key experiments that should be done. The aims of this review are to provide an overview of the current circuit-based approaches to psychosis and to encourage further research in this direction.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":null,"pages":null},"PeriodicalIF":12.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Whole-Brain Topographic Ontology. 全脑拓扑本体论
IF 12.1 1区 医学
Annual review of neuroscience Pub Date : 2024-08-01 Epub Date: 2024-07-01 DOI: 10.1146/annurev-neuro-082823-073701
Michael Arcaro, Margaret Livingstone
{"title":"A Whole-Brain Topographic Ontology.","authors":"Michael Arcaro, Margaret Livingstone","doi":"10.1146/annurev-neuro-082823-073701","DOIUrl":"10.1146/annurev-neuro-082823-073701","url":null,"abstract":"<p><p>It is a common view that the intricate array of specialized domains in the ventral visual pathway is innately prespecified. What this review postulates is that it is not. We explore the origins of domain specificity, hypothesizing that the adult brain emerges from an interplay between a domain-general map-based architecture, shaped by intrinsic mechanisms, and experience. We argue that the most fundamental innate organization of cortex in general, and not just the visual pathway, is a map-based topography that governs how the environment maps onto the brain, how brain areas interconnect, and ultimately, how the brain processes information.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":null,"pages":null},"PeriodicalIF":12.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grid Cells in Cognition: Mechanisms and Function 认知中的网格细胞:机制与功能
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2024-04-29 DOI: 10.1146/annurev-neuro-101323-112047
Ling L. Dong, Ila R. Fiete
{"title":"Grid Cells in Cognition: Mechanisms and Function","authors":"Ling L. Dong, Ila R. Fiete","doi":"10.1146/annurev-neuro-101323-112047","DOIUrl":"https://doi.org/10.1146/annurev-neuro-101323-112047","url":null,"abstract":"The activity patterns of grid cells form distinctively regular triangular lattices over the explored spatial environment and are largely invariant to visual stimuli, animal movement, and environment geometry. These neurons present numerous fascinating challenges to the curious (neuro)scientist: What are the circuit mechanisms responsible for creating spatially periodic activity patterns from the monotonic input-output responses of single neurons? How and why does the brain encode a local, nonperiodic variable—the allocentric position of the animal—with a periodic, nonlocal code? And, are grid cells truly specialized for spatial computations? Otherwise, what is their role in general cognition more broadly? We review efforts in uncovering the mechanisms and functional properties of grid cells, highlighting recent progress in the experimental validation of mechanistic grid cell models, and discuss the coding properties and functional advantages of the grid code as suggested by continuous attractor network models of grid cells.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":null,"pages":null},"PeriodicalIF":13.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Language in Brains, Minds, and Machines 大脑、思维和机器中的语言
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2024-04-26 DOI: 10.1146/annurev-neuro-120623-101142
Greta Tuckute, Nancy Kanwisher, Evelina Fedorenko
{"title":"Language in Brains, Minds, and Machines","authors":"Greta Tuckute, Nancy Kanwisher, Evelina Fedorenko","doi":"10.1146/annurev-neuro-120623-101142","DOIUrl":"https://doi.org/10.1146/annurev-neuro-120623-101142","url":null,"abstract":"It has long been argued that only humans could produce and understand language. But now, for the first time, artificial language models (LMs) achieve this feat. Here we survey the new purchase LMs are providing on the question of how language is implemented in the brain. We discuss why, a priori, LMs might be expected to share similarities with the human language system. We then summarize evidence that LMs represent linguistic information similarly enough to humans to enable relatively accurate brain encoding and decoding during language processing. Finally, we examine which LM properties—their architecture, task performance, or training—are critical for capturing human neural responses to language and review studies using LMs as in silico model organisms for testing hypotheses about language. These ongoing investigations bring us closer to understanding the representations and processes that underlie our ability to comprehend sentences and express thoughts in language.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":null,"pages":null},"PeriodicalIF":13.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Visual Systems of Zebrafish. 斑马鱼的视觉系统
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2024-04-25 DOI: 10.1146/annurev-neuro-111020-104854
Herwig Baier, Ethan K Scott
{"title":"The Visual Systems of Zebrafish.","authors":"Herwig Baier, Ethan K Scott","doi":"10.1146/annurev-neuro-111020-104854","DOIUrl":"https://doi.org/10.1146/annurev-neuro-111020-104854","url":null,"abstract":"The zebrafish visual system has become a paradigmatic preparation for behavioral and systems neuroscience. Around 40 types of retinal ganglion cells (RGCs) serve as matched filters for stimulus features, including light, optic flow, prey, and objects on a collision course. RGCs distribute their signals via axon collaterals to 13 retinorecipient areas in forebrain and midbrain. The major visuomotor hub, the optic tectum, harbors nine RGC input layers that combine information on multiple features. The retinotopic map in the tectum is locally adapted to visual scene statistics and visual subfield-specific behavioral demands. Tectal projections to premotor centers are topographically organized according to behavioral commands. The known connectivity in more than 20 processing streams allows us to dissect the cellular basis of elementary perceptual and cognitive functions. Visually evoked responses, such as prey capture or loom avoidance, are controlled by dedicated multistation pathways that-at least in the larva-resemble labeled lines. This architecture serves the neuronal code's purpose of driving adaptive behavior.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":null,"pages":null},"PeriodicalIF":13.9,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140658191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Retrotransposons and Endogenous Retroviruses in Age-Dependent Neurodegenerative Disorders. 逆转录病毒和内源性逆转录病毒在年龄依赖性神经退行性疾病中的作用。
IF 13.9 1区 医学
Annual review of neuroscience Pub Date : 2024-04-25 DOI: 10.1146/annurev-neuro-082823-020615
Bess Frost, Josh Dubnau
{"title":"The Role of Retrotransposons and Endogenous Retroviruses in Age-Dependent Neurodegenerative Disorders.","authors":"Bess Frost, Josh Dubnau","doi":"10.1146/annurev-neuro-082823-020615","DOIUrl":"https://doi.org/10.1146/annurev-neuro-082823-020615","url":null,"abstract":"Over 40% of the human genome is composed of retrotransposons, DNA species that hold the potential to replicate via an RNA intermediate and are evolutionarily related to retroviruses. Retrotransposons are most studied for their ability to jump within a genome, which can cause DNA damage and novel insertional mutations. Retrotransposon-encoded products, including viral-like proteins, double-stranded RNAs, and extrachromosomal cytoplasmic DNAs, can also be potent activators of the innate immune system. A growing body of evidence suggests that retrotransposons are activated in age-related neurodegenerative disorders and that such activation causally contributes to neurotoxicity. Here we provide an overview of retrotransposon biology and outline evidence of retrotransposon activation in age-related neurodegenerative disorders, with an emphasis on those involving TAR-DNA binding protein-43 (TDP-43) and tau. Studies to date provide the basis for ongoing clinical trials and hold promise for innovative strategies to ameliorate the adverse effects of retrotransposon dysregulation in neurodegenerative disorders.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":null,"pages":null},"PeriodicalIF":13.9,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140658749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信