{"title":"海马体认知地图如何支持灵活导航。","authors":"John O'Keefe","doi":"10.1146/annurev-neuro-112723-023341","DOIUrl":null,"url":null,"abstract":"<p><p>During navigation to a goal, a portion of the hippocampal place cells exhibit directional preferences, firing more in some directions than in others. These directional preferences create vector fields oriented toward locations scattered around the environment called ConSinks. The population vector field averaged across all of the cells recorded in each animal flows toward an average ConSink located close to the goal, providing a means for navigation in unobstructed environments. Closer examination of the ConSink place cell directional firing reveals a fantail representation in which alternative paths to the goal are evaluated, providing the basis for flexible navigation. Additional assumptions about how obstructions might be represented suggest a solution for navigation in more complicated environments. Implications for the phenomena of directionality on linear tracks and splitter cells are discussed.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How the Hippocampal Cognitive Map Supports Flexible Navigation.\",\"authors\":\"John O'Keefe\",\"doi\":\"10.1146/annurev-neuro-112723-023341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During navigation to a goal, a portion of the hippocampal place cells exhibit directional preferences, firing more in some directions than in others. These directional preferences create vector fields oriented toward locations scattered around the environment called ConSinks. The population vector field averaged across all of the cells recorded in each animal flows toward an average ConSink located close to the goal, providing a means for navigation in unobstructed environments. Closer examination of the ConSink place cell directional firing reveals a fantail representation in which alternative paths to the goal are evaluated, providing the basis for flexible navigation. Additional assumptions about how obstructions might be represented suggest a solution for navigation in more complicated environments. Implications for the phenomena of directionality on linear tracks and splitter cells are discussed.</p>\",\"PeriodicalId\":8008,\"journal\":{\"name\":\"Annual review of neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-neuro-112723-023341\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-112723-023341","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
How the Hippocampal Cognitive Map Supports Flexible Navigation.
During navigation to a goal, a portion of the hippocampal place cells exhibit directional preferences, firing more in some directions than in others. These directional preferences create vector fields oriented toward locations scattered around the environment called ConSinks. The population vector field averaged across all of the cells recorded in each animal flows toward an average ConSink located close to the goal, providing a means for navigation in unobstructed environments. Closer examination of the ConSink place cell directional firing reveals a fantail representation in which alternative paths to the goal are evaluated, providing the basis for flexible navigation. Additional assumptions about how obstructions might be represented suggest a solution for navigation in more complicated environments. Implications for the phenomena of directionality on linear tracks and splitter cells are discussed.
期刊介绍:
The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience.
The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.