Maria Sachkova, Vengamanaidu Modepalli, Maike Kittelmann
{"title":"神经系统的深层进化根源。","authors":"Maria Sachkova, Vengamanaidu Modepalli, Maike Kittelmann","doi":"10.1146/annurev-neuro-112723-040945","DOIUrl":null,"url":null,"abstract":"<p><p>The evolutionary success of animals can, at least in part, be attributed to the presence of neurons that allow long-distance communication between tissues, coordination of movements, and the capacity for learning. However, the evolutionary origin and relationship of neurons to other cell types are fundamental questions that remain unsolved. The first neurons probably evolved shortly after the rise of the first animals over 600 million years ago. Studies on early-diverging animal lineages have provided key insights into the mechanisms underlying the origin of neurons. Recent discoveries in morphology, molecular signatures, and function of neurons in cnidarians and comb jellies, as well as neuron-like cells in nerveless placozoans, sponges, and other eukaryotes, may prompt a redefinition of what constitutes a neuron. Here we review the latest insights into the origin of neurons and nervous systems, while also highlighting exciting technological advancements that not only are accelerating our understanding of nervous system evolution, morphology, and function but also hold the potential to revolutionize the field.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Deep Evolutionary Roots of the Nervous System.\",\"authors\":\"Maria Sachkova, Vengamanaidu Modepalli, Maike Kittelmann\",\"doi\":\"10.1146/annurev-neuro-112723-040945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The evolutionary success of animals can, at least in part, be attributed to the presence of neurons that allow long-distance communication between tissues, coordination of movements, and the capacity for learning. However, the evolutionary origin and relationship of neurons to other cell types are fundamental questions that remain unsolved. The first neurons probably evolved shortly after the rise of the first animals over 600 million years ago. Studies on early-diverging animal lineages have provided key insights into the mechanisms underlying the origin of neurons. Recent discoveries in morphology, molecular signatures, and function of neurons in cnidarians and comb jellies, as well as neuron-like cells in nerveless placozoans, sponges, and other eukaryotes, may prompt a redefinition of what constitutes a neuron. Here we review the latest insights into the origin of neurons and nervous systems, while also highlighting exciting technological advancements that not only are accelerating our understanding of nervous system evolution, morphology, and function but also hold the potential to revolutionize the field.</p>\",\"PeriodicalId\":8008,\"journal\":{\"name\":\"Annual review of neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-neuro-112723-040945\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-112723-040945","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The Deep Evolutionary Roots of the Nervous System.
The evolutionary success of animals can, at least in part, be attributed to the presence of neurons that allow long-distance communication between tissues, coordination of movements, and the capacity for learning. However, the evolutionary origin and relationship of neurons to other cell types are fundamental questions that remain unsolved. The first neurons probably evolved shortly after the rise of the first animals over 600 million years ago. Studies on early-diverging animal lineages have provided key insights into the mechanisms underlying the origin of neurons. Recent discoveries in morphology, molecular signatures, and function of neurons in cnidarians and comb jellies, as well as neuron-like cells in nerveless placozoans, sponges, and other eukaryotes, may prompt a redefinition of what constitutes a neuron. Here we review the latest insights into the origin of neurons and nervous systems, while also highlighting exciting technological advancements that not only are accelerating our understanding of nervous system evolution, morphology, and function but also hold the potential to revolutionize the field.
期刊介绍:
The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience.
The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.